908
0
本发明提出了一种重金属硫化物的无害化处理方法,在中性或碱性条件下将重金属硫化物与重金属硫化物催化剂混合进行氧化反应。本发明利用氧化法,将硫化物转化为亚硫酸盐或硫酸盐。而使用的氧化剂,必须是在中性或碱性条件下具有将S2‑氧化成高氧化成硫酸根或亚硫酸根,且被还原的产物不产生二次污染。
928
0
本发明公开一种新型金银提取剂的制备方法,包括以下步骤:(1)选取氰酸盐和亚铁盐为原料,将氰酸盐和亚铁盐混匀;(2)将混匀的原料放入耐高温坩埚中焙烧;(3)焙烧结束后,趁热将得到的熔融态合成物从坩埚中倒出,并置于空气中自然冷却;(4)冷却后,得到块状固体合成物,将块状固体合成物碎磨成粉末状,即得新型金银提取剂。本发明仅使用氰酸盐和亚铁盐便可合成能够与氰化钠提金效果相媲美的低毒环保提取剂;合成原料组成简单、价格低廉,且合成过程工艺简单、易操作,所合成的金银提取剂具有金银浸出率高、浸出速率快、低毒环保、试剂成本低、对矿石适应性强等优点。
923
0
一种采用稀土氧化物去除工业硅中硼磷杂质的方法,涉及一种半导体材料工业硅。提供一种采用稀土氧化物去除工业硅中硼磷杂质的方法。将工业硅原料和造渣剂放进石墨坩埚;抽真空,启动中频感应电源加热,使石墨坩埚中的硅料和渣料熔化;待石墨坩埚内物料全部熔化后,将坩埚上方的石墨通气棒预热;向体系中开始通入惰性气体,待预热充分后将通气棒开始通气搅拌;渣过程中,通过调整中频功率,使反应温度为1550~1850℃;待造渣充分后将通气棒升离坩埚,然后通过翻转浇铸将硅液倒入石墨模具中,静置,冷却后取出硅锭,去除头尾杂质富集部分,得到提纯后的多晶硅锭,测量熔炼后的硼、磷杂质含量。
1136
0
本发明提供了一种生产软磁用四氧化三锰的低温焙烧方法,包括将锰转化为碳酸锰的步骤,其特征在于,将碳酸锰转入充满惰性保护气的分解炉,升温至420℃~460℃焙烧,并于420℃~460℃下保持5~20min,分解生成氧化锰,然后向分解炉中通入N2O,使分解炉中N2O的体积浓度保持为28%~32%,继续焙烧10min,得到四氧化三锰。焙烧温度降低至500℃以下,反应时间短,实现了四氧化三锰的低温制备,降低了能耗。避免了中间相三氧化二锰的生成,提高了四氧化三锰成品的纯度,所获得的四氧化三锰的纯度在99.5%以上,不仅可用于制备高端软磁铁氧体的原料,而且可用于制备新能源电极材料。稳定性和操作可控性好,延长了设备使用周期。
1133
0
本发明涉及从含有氯化钛化合物的液体开始制备TiO2粉末的方法,该方法包括:a)雾化所述液体并将该雾化的液体与蒸汽和空气流在100-250℃下反应,以将所述氯化钛化合物转变为二氧化钛TiO2;b)然后,将从步骤a)得到的气相及夹带着的TiO2粉末加入到烘箱中,控制所述烘箱的温度在400-900℃以从所述粉末中清除掉残余的有机化合物和盐酸。
1038
0
本发明涉及通式I的含磷氨基酸化合物及其用于萃取分离钇的用途,其中,R1和R2各自独立地选自C1~C14烷基,且R1和R2的总碳原子数为10或更大;R3选自氢、C1~C6烷基或C6~C12芳基;Z为C1~C12亚烷基,R4和R5各自独立地选自氢、C1~C10烷基、C3~C10环烷基和C6~C12芳基,或者R4和R5和与其相连接的碳原子共同形成C3~C10环烷基。本发明的含磷氨基酸化合物作为萃取剂的萃取分离好,分离系数大,合成方法简单,原料简单易得,成本低廉,具有较高的工业应用价值。
1110
0
一种利用磁黄铁矿筛选浸矿菌种的方法。本发明根据不同浸矿菌株生理特性的差异,经过培养、富集,在不同铁、硫比的磁黄铁矿中形成不同的优势菌株群,通过磁选方法将磁黄铁矿分选出来,吸附在矿石上的相应菌株群亦被筛选出。筛菌效率显著高于常规人工培养基分离筛菌的方法;筛选的菌株性能优异,以氧化亚铁硫杆菌为例,与常规的9K培养基分离的菌株相比,传代时间缩短、比生长速率增加、氧化活性提高。
803
0
生产微粒钛合金产品的方法(100)可以包括制备(110)具有TiO2粉末和至少一种合金元素粉末的复合微粒氧化物混合物。可以使用金属还原剂在氢气气氛下在还原温度下使复合微粒氧化物混合物共还原(120)一段足以产生氢化的钛合金产品的还原时间。然后可以在氢气气氛以及热处理温度下对氢化的钛合金产品热处理(130)以减小孔径和比表面积,以形成热处理的氢化的钛产品。可使热处理的氢化的钛产品脱氧(140)以将残余氧减少至小于0.2wt%,以形成作为微粒的脱氧的氢化的钛产品。可以任选地使脱氧的氢化的钛产品脱氢(150)以形成作为微粒的钛合金产品。
939
0
本发明属于冶金法提纯多晶硅领域。一种真空感应熔炼去除硅粉中磷及金属杂质的方法,首先,在高真空状态下,利用感应加热方式熔炼硅粉,去除多晶硅中的磷杂质,然后进行拉锭,利用定向凝固技术将硅粉中的金属杂质去除。本发明方法简单,同时应用真空感应熔炼和定向凝固技术来去除多晶硅中的磷及金属杂质,实现了硅粉的熔炼,除杂效果良好,去除效率高,有效地利用了感应线圈加热温度高的特点,方法简单易行,集成了除磷和除金属的双重效果,产量大,适合大规模生产工业生产,提纯效果稳定。
857
0
从铅阳极泥提取金、银及回收锑、铋、铜、铅的 方法。包括盐酸+硫酸混酸浸出、水解沉锑、水解沉铋、中和 置换沉铜、盐浸脱铅、置换氯化银、沉铅、熔炼银电解、溶解 金电解几个步骤。直收率Au≥99%, Ag≥98%; 加收率 Sb.Bi>90%, Cu>65%。
1173
0
本发明提供一种金属回收方法,包括步骤:(a)将培养液加入反应釜中,将菌种接种到 反应釜内,恒温26-30度培养;(b)将金属废弃物粉碎为0.35-3毫米颗粒投入反应釜内,金 属废弃物和培养液的质量比为1∶5-1∶20,浸取金属废弃物中的多种金属;(c)进行固液分 离得到金属废弃物颗粒和浸取液;(d)萃取浸取液,获得浓缩液和稀释液。浓缩液经蒸发后 获得高纯度的CuSO4;稀释液添加硫酸亚铁和无机盐后,可以反复用于步骤(a)中作为接种 液和培养液。该方法能有效地针对不同性质的PCB板,回收其所含的金属,是一项绿色、环 保、值得推广的技术。
977
0
在此描述了一种用于生产水泥粘合剂组合物的方法,该水泥粘合剂组合物包含一种或多种具有通式w MgCO3.x MgO.y Mg(OH)2.z H2O的碳酸镁,其中w是等于或大于1的一个数值,x、y以及z中的至少一个是大于0的一个数值,并且w、x、y以及z可以是(但不必是)整数。该方法的特征在于以下步骤:(a)加热菱镁矿以释出二氧化碳气体并且产生包含氧化镁的一种固体产物;并且(b)使包含在步骤(a)中产生的氧化镁的一种水性混合物与碳酸盐离子源在范围为25℃至120℃的一个温度下相接触,以产生这些碳酸镁中的至少一种;(c)任选地在从45℃至500℃的一个温度下加热步骤(b)的该一种或多种碳酸镁产物;并且(d)将在步骤(b)或任选步骤(c)中产生的该一种或多种碳酸镁与至少一种氧化镁进行共混以产生一种水泥粘合剂组合物。该方法适合于处理天然存在的菱镁矿矿石或通过除其他之外硅酸镁的矿物碳酸盐化、氢氧化镁的碳酸盐化、或在无机碱的存在下使用二氧化碳对海水进行处理而产生的菱镁矿。
818
0
本发明提供了一种具有较大孔径的大孔聚合物,典型孔径为5000~200000埃,典型压碎重量至少为175g/粒。这种大孔聚合物可以利用互穿聚合网络(IPN)技术制备,这种聚合物也可以形成大孔树脂。本发明也例举了这种大孔聚合物或树脂的应用方法。
1037
0
本发明涉及一种从含铜的原料中回收金属特别是铜的方法,因此将原料浸析到含氯化物的溶液中。原料的浸析在氧化和足够高的氧化还原电势下进行,以致浸析得到的氯化铜溶液中的铜主要为二价。得到的氯化物溶液含有铜和潜在的其他有价值金属,将它送去液-液萃取。在萃取中,铜首先用萃取转移到有机相,然后在汽提中转移到硫酸盐溶液中,然后将它送去铜电解冶金。
1263
0
一种以含铁量高的次氧化锌为原料进行湿法炼锌过程中氧化除杂的方法,具体包括以下五个工序:A、次氧化锌浸出中初步除杂;B、ZnSO4溶液深度除杂;C、ZnSO4溶液一段净化;D、ZnSO4溶液二段净化;E、过滤,最终得到符合电解生产金属锌要求的ZnSO4溶液。本发明很好的解决了次氧化锌作原料生产电锌除杂的问题,特别是对As、Sb、Ge、F、Fe的除去,使电锌生产顺利流畅,且产品质量高。以工业级H2O2作氧化剂对次氧化锌浸出液进行除杂,由于H2O2不会带入对电解锌有害杂质,使生产顺利流畅,提高产品质量和生产产量,降低成本,而且工业级H2O2相对廉价易购,适于大规模地推广应用。
1149
0
本发明公开一种硅镁红土镍矿冶炼方法,包括步骤a)将硅镁红土镍矿原矿与硫化剂混合后压块得到强度为4MPa~12MPa的团块,所述硫化剂包括硫精矿和/或石膏粉;b)将100重量份的炉料和20~30重量份的燃料投入鼓风炉熔炼后得到低冰镍、炉渣,所述燃料包括焦炭或者焦炭和无烟煤的混合物,所述炉料包括步骤a)制成的团块和熔剂;所述熔剂为石灰石或生石灰,和/或石英石;所述炉料中的SiO2重量∶Fe重量∶CaO+MgO重量∶S重量为20~40∶5~15∶15~30∶1~10。团块在由鼓风炉的顶部向焦点区运动的过程中,团块中的游离水和结晶水被加热蒸发,留下大量的孔隙,透气性增加,利于熔炼,因此能达到较高的床能力和回收率。
913
0
本发明涉及一种可控制涂层粒度的钛基二氧化铅电极的制备方法。所述的方法包括钛的预处理、热分解法涂制锡锑氧化物中间层、电沉积制备含氟的二氧化铅镀层。采用本发明制备的钛基二氧化铅电极镀层与基体的结合力强、价格低廉、易于工业操作、粒度尺度范围为10~500NM,具有潜在的应用价值。
1180
0
本发明公开一种高冰镍的制备方法,包括步骤:a)将包括硅镁红土矿原矿的原料压块得到强度为4MPa~12MPa的团块;b)将100重量份的炉料和20~30重量份的焦炭和/或无烟煤投入鼓风炉进行吹炼后得到低冰镍、低冰镍炉渣,所述炉料包括步骤a)制成的团块和添加剂,所述添加剂包括:Ca源,和/或S源,和/或Fe源,和/或SiO2源;c)将所述低冰镍从鼓风炉内排出放入温度为1100℃~1300℃的连续吹炼炉,低冰镍液面高于连续吹炼炉的风口50mm~200mm;d)将造渣剂加入连续吹炼炉,向连续吹炼炉内喷吹氧化性气体,反应得到高冰镍、高冰镍炉渣。由于团块留有孔隙,使红土矿具有更好的熔炼效果,制备出低冰镍,然后以较高回收率将低冰镍中的镍富集制备出高冰镍。
1290
0
本发明涉及一种难浸银精矿细菌氧化-氰化提银工艺。将磨矿后的矿浆进入浓缩机洗涤脱药;矿浆洗涤脱药后进入调浆槽,用培养基水溶液调整矿浆浓度;在细菌氧化槽中一次性加足菌种,将调好浓度的矿浆通过细菌氧化槽进行一级细菌氧化,将一级细菌氧化渣进行二级细菌氧化,浓缩脱除氧化液;将经过二级细菌氧化后脱除氧化液的氧化渣,进行三次逆流洗涤、一次压滤获得氧化渣;将氧化渣进行氰化浸出提银。本发明较好解决环境污染问题,具有银回收率高、基建投资小、生产成本低、操作简便、所用细菌无毒、对环境无污染等优点。
1064
0
本发明提供铼酸铵萃取废液中有机相的回收方法。包含以下方法步骤:a)向铼酸铵萃取废液中添加占铼酸铵萃取废液总体积10%-20%的磺化煤油并搅拌进行稀释,再加入占铼酸铵萃取废液总体积10%-20%的仲辛醇并搅拌,抑制有机相的乳化;b)加入铼酸铵萃取废液总体积0.1%-1%的质量百分比浓度1%-10%的硫酸并进行搅拌,将有机相进行破乳;c)将破乳后的铼酸铵萃取废液在容器中进行沉降分层;d)排出下层水相,上层即为回收的有机相。本发明的有益效果:抑制有机相的乳化,将有机相回收,减少资源浪费。
819
0
本发明是氨化HEH(EHP)溶剂萃取分组分离提 纯钆的工艺。用氨化度20—45%的1—1.7M HEH(EHP)—煤油;洗涤液0.8—1.5N和2—3N HCl,反萃酸2—3N HCl。 对含以重稀土为主的离子吸附型稀土矿经Gd —Tb分组后的萃余水相La—Gd的(其中Tb+Dy <0.02%)溶液或类似稀土组成进行Nd—Sm,Eu— Gd分组分离,其溶液浓度为0.2—0.4M,pH2—3,氯 化物水溶液进行多级多段逆流分馏萃取和多级逆流 反萃。
1032
0
本发明公开了一种锌锰废旧干电池产业化回收的方法,步骤为电池一级撕碎和二级撕碎;烘干、筛选,回收部分黑色碳粉末,磁选回收铁质金属;电池破碎碎片三级破碎;筛选回收剩余黑色粉末,风选分离塑料和锌等金属粉末,本发明为机械式处理法,其废旧电池回收过程中不产生三废,不会造成二次污染,全自动化流水线作业,工艺简单,生产成本低,通过自制膜进行吸附回收,解决了汞易挥发难以控制等问题,确保各种有价成分回收率高。
948
0
本发明涉及一种废钕铁硼回收制取钕及钕镝化合物的方法,根据钕铁硼及其含有的各种元素的性质,选择酸溶解、沉淀或萃取分离,逐步将非稀土杂质除去,制得稀土氧化物。其稀土产品符合制作钕铁硼所需要的金属钕镝合金的要求(稀土总量≥98%,Fe<0.2%)。
1245
0
本发明公开了一种红土镍矿浸出液中氧化除铁的方法,该方法包括调整浸出液的pH值至1.7-5.0使浸出液中所含的Fe3+离子沉淀,再将浸出液的pH值调整为7.5-8.5将浸出液中的Ni2+离子转变成Ni(OH)2沉淀分离出来,该方法进一步包括以下步骤:1)将沉镍母液的pH值调整至8.6-10,将浸出液中所含的Mn2+转变成Mn(OH)2沉淀下来;2)沉淀中Mn(OH)2与氧气反应生成MnO2,将含有MnO2的沉淀做氧化剂,返回浸出液中将浸出液中所含的Fe2+氧化为Fe3+,通过调整pH值使Fe3+沉淀。本发明的方法不用外加氧化剂,充分利用系统自身产生的二氧化锰做氧化剂,不但能够降低成本,而且除铁效果好,可将铁降低至0.025g/l以下。?
1166
0
一种钕铁硼稀土永磁废料二次真空熔炼再生永磁体的方法,是将所述钕铁硼稀土永磁体废料用金属清洗剂或汽油清洗干净,去除杂质,加适量铝放入真空熔炼炉中熔炼,并使其充分搅拌以造渣之后浇铸成钢锭,再将此合金钢锭与适量的Nd、Dy、Al、(Fe·B)合金等放入真空熔炼进行二次熔炼后浇铸出稀土永磁合金钢锭,使用此稀土永磁合金钢锭进行(制粉、取向压型、真空烧结和热处理)常规的生产工艺,可生产出Br≥11.8KGs、(B·H)max≥33MGsOe的钕铁硼稀土永磁体,从而使回收工艺简单实用。
752
0
本发明涉及一种从冶金废料(主要是其中有铁硅酸盐和铁酸盐含铜、钴、镍、锌等有价金属的冶炼渣、浸出渣和烟尘)中回收有价金属的方法,包括下述步骤:1)酸解:将冶金废料与水、硫酸混合,使其反应分解以释放出其中结合的有价金属;2)焙烧:将酸解后的物料与硫料混合得混合料,然后通入空气焙烧;其中所述硫料为含有非氧化态硫组分的物料,焙烧温度控制在450℃~800℃;3)浸出:焙烧后,焙砂加水浸出;4)回收:浸出后的矿浆固液分离后,得到含有价金属的溶液供回收其中有价金属。本发明的回收方法浸出效率高,且经济、简便。
北方有色为您提供最新的有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!