845
0
一种高镁锂比卤水提锂的新型共萃体系,由萃取剂及共萃取剂构成,所述的共萃取剂为六氟磷酸钾、六氟磷酸钠、六氟磷酸镁、六氟磷酸钙、氟硼酸钾,氟硼酸钠、氟硼酸镁、氟硼酸钙中的一种或两种以上的混合物。一种高镁锂比卤水提锂的新型共萃方法,步骤包括萃取、反萃取、沉淀去镁及沉淀得锂,对镁锂比大于100的卤水,在萃取与反萃取步骤之间增加洗脱步骤。本发明工艺流程简单,锂提取率较高,有效的降低了卤水镁锂比,较传统的三氯化铁萃取体系具有明显优势,可应用于盐湖卤水提锂,尤其适于解决高镁锂比盐湖卤水提锂困难的问题。
1144
0
本发明公开了一种含活性锂源隔膜,包括隔膜和含活性锂源涂层,所述的含活性锂源涂层涂布在隔膜的一侧或双侧。本发明公开了一种含活性锂源隔膜的制作方法。本发明还公开了一种锂离子电池。本发明具有工艺环境要求低,且在隔膜的表面涂布的活性材料,使得隔膜能够存储一定量的锂源,为锂离子二次电池体系提供锂源,弥补在首次充放时造成的锂离子的损失,可以提高正极活性材料的利用率达96-98%左右,可以使二次电池正极活性物质克容量发挥达到半电池的理想水平;同时,含锂源的活性材料在失去锂源后形成固体层覆盖在隔膜上,形成支撑隔膜结构固体物质层,可以增加隔膜的热稳定性,防止隔膜热收缩,可以电池的安全性能。
887
0
本申请公开了磷酸铁锂正极材料的制备方法及磷酸铁锂正极材料。本申请的制备方法,包括采用固相合成法制备磷酸铁锂,固相合成法包括球磨混合和高温煅烧,在煅烧时的惰性气氛中通入乙炔,在生成的磷酸铁锂颗粒内部和磷酸铁锂颗粒之间形成碳纳米管,获得高导电性的磷酸铁锂正极材料。本申请的制备方法,巧妙的将碳纳米管的化学气相沉积法与磷酸铁锂的固相合成法相结合,在高温煅烧时,随着磷酸铁锂合成,碳纳米管逐步沉积在磷酸铁锂颗粒表面,在颗粒内部及颗粒间形成三维导电通路,提高了正极材料的导电性能。本申请的方法,磷酸铁锂和碳纳米管在同一反应容器内交叉生成,简化了工艺,并且碳纳米管分布均匀,提高了磷酸铁锂正极材料的质量。
本发明公开了一种磷酸铁锂‑硼酸共包覆的镍钴铝酸锂正极材料及其制备方法,称取一定质量的镍钴铝酸锂前驱体,混锂后进行烧结,得到镍钴铝酸锂初次烧结料,之后将镍钴铝酸锂初次烧结料进行搅拌水洗,真空干燥得到镍钴铝酸锂正极材料基体。再将基体正极材料和包覆物磷酸铁锂‑硼酸混合,之后经过高温烧结得到磷酸铁锂‑硼酸共包覆的镍钴铝酸锂正极材料。本发明的共包覆镍钴铝酸锂正极材料具有良好的导电性,包覆层均匀,可防止正极材料基体和电解液的直接反应,有效的提升材料的循环性能和安全性能。且本发明工艺简单,产品性能优异,成本低廉,适于大规模产业化生产。
1104
0
公开了磷酸锰铁锂复合物,其制造方法及锂离子电池正极,以重量计所述磷酸锰铁锂复合材料包括:a)50‑90%大颗粒磷酸锰铁锂,其一次粒径为80‑500nm,二次粒径为5‑20μm,按所述磷酸锰铁锂材料中过渡金属元素的总摩尔数计,磷酸锰铁锂材料中锰元素的含量为20‑80%;b)10‑50%小颗粒磷酸锰铁锂,其一次粒径为30‑200nm,二次粒径为0.5‑4μm,按所述磷酸锰铁锂材料中过渡金属元素的总摩尔数计,磷酸锰铁锂材料中锰元素的含量为50‑90%;所述大颗粒磷酸锰铁锂的锰含量要低于所述小颗粒磷酸锰铁锂的锰含量。
本发明提供一种锂离子电池热熔胶层性能的测试方法、装置及锂离子电池。本发明提供的测试方法包括以下步骤:获取锂离子电池热熔胶层的实际剪切力F1;获取锂离子电池热熔胶层的跌落剪切力F2;当F1>F2时,判断锂离子电池热熔胶层的粘接性能合格;当F1≤F2时,判断锂离子电池热熔胶层的粘接性能不合格。本发明通过获取F1和F2,并根据F1和F2的大小关系判断锂离子电池热熔胶层的粘接性能是否合格,降低了对热熔胶层性能进行评价时主观因素的影响,实现对锂离子电池热熔胶层性能进行科学合理地评价从而能够指导锂离子电池热熔胶层的设计。本发明的锂离子电池F1大于F2,从而该锂离子电池具有良好的安全性能。
791
0
本发明涉及一种锂离子电池正极材料磷酸铁锰锂及其制备方法。本发明属于锂离子电池技术领域。一种锂离子电池正极材料磷酸铁锰锂,其特征是:正极材料磷酸铁锰锂的化学组成为Li1-yMyFe1-xMnxPO4。锂离子电池正极材料磷酸铁锰锂的制备方法,包括以下步骤:1)前躯体合成:将原料置于容器中,加入分散剂,在1000-2500r/min的转速下研磨分散1-3h,将糊状浆料干燥研碎;2)预烧:以1-10℃/min的升温速率升至350-550℃,恒温预烧3-20h,随炉冷却至室温,制得磷酸铁锰锂;3)高温包碳:将磷酸铁锰锂、碳源、分散剂混合分散1-3h,干燥后,以1-10℃/min的升温速率升至600-850℃,保温3-20h,随炉冷却至室温,制得磷酸铁锰锂。本发明具有工艺简单,电池成本低,正极材料安全性好,热稳定性好,可提高导电性能等优点。
1053
0
本发明涉及一种锂硫电池用负极和包含其的锂硫电池,更具体地,涉及一种锂硫电池用负极,所述锂硫电池用负极包含负极集电器和位于所述负极集电器的至少一个面上并含有石墨烯的保护层。本发明的锂硫电池用负极通过防止多硫化锂与负极集电器之间的接触而改善了锂硫电池的寿命特性。
966
0
本发明属于电池材料技术领域,具体涉及一种硫化聚丙烯腈材料及其锂硫电池正极、锂硫电池。本发明将聚丙烯腈与硫粉所形成的混合物加热形成的硫化聚丙烯腈材料,具有接近100%的库伦效率和极低的自放电率。硫化聚丙烯腈作为一种含硫正极材料,能在电解液中稳定存在并参与锂离子的循环,不存在锂硫电池的“穿梭效应”。将本发明的硫化聚丙烯腈材料用作锂硫电池正极,既可以维持锂硫电池的导电性能、缓解充放电过程中的体积膨胀,又可以改善锂硫电池的循环性能。
964
0
一种高镁锂比盐湖卤水镁锂分离的方法,属于盐湖卤水提锂技术领域。本发明利用络合物对碱金属离子的选择性络合能力,与镁离子络合后提高了纳滤膜对镁离子的截留率,通过浓缩沉淀制取碳酸锂。本方法适用于高镁锂比盐湖卤水的提锂工艺中,镁锂分离效率高,工艺简单,简化了后续浓缩工艺,大幅度降低了生产成本,易于实现大规模工业化生产,有着良好的应用前景。
1134
0
本申请公开了一种从磷酸铁锂提锂渣中回收磷酸铁的方法以及其应用,涉及锂电池技术领域,包括以下步骤:(1)将磷酸铁锂提锂渣与水的混合浆料中加入还原剂进行还原浸出反应,获得浸出渣b以及含磷元素和铁元素的浸出液a;(2)将所述浸出液a中加入氧化剂进行沉淀反应,获得磷酸铁浆料;(3)获得所述磷酸铁浆料的固相物料,将所述固相物料经洗涤、煅烧后,即得所述磷酸铁。本申请实现了磷酸铁锂提锂渣综合利用制备电池用磷酸铁,具有浸出条件温和、磷元素和铁元素的浸出率高且沉淀率高以及产品纯度高的优点。
1141
0
本发明公开了一种从锂离子电池正极材料中高效回收锂的方法,包括以下步骤:(1)将锂离子电池正极材料进行预处理得到预处理正极粉末;(2)将预处理正极粉末在惰性气氛保护下与还原剂加热反应,得到还原态正极粉末,其中,所述还原态正极粉末中含有易水解的锂化合物;(3)将还原态正极粉末加入水中进行水解,并控制水解体系的pH值为7‑8,液固比为(2‑3):1;(4)水解完毕后,将步骤(3)中水解体系进行固液分离,液相即为锂离子溶液。本发明还相应提供一种用于上述锂离子电池正极材料的回收系统。本发明的工艺过程简单,回收成本低,适用范围广,可适用于不同类型的锂正极材料,具有广阔的市场前景。
983
0
一种利用锂辉石提锂废渣制备叶腊石的方法,以锂辉石硫酸焙烧后水浸提锂工艺过程中所得最终固体废渣为原料,经除杂漂白和煅烧两个过程制备叶腊石。首先,将废渣与水按质量比1∶(3~8)的比例混合,向其中加入废渣质量3%~5%的H2O2溶液,常温反应1~2h;再向其中加入废渣质量2.5%~4.5%的次硫酸钠和2%~5%质量的草酸,在55~95℃下反应1~2h,过滤、洗涤得滤饼。滤饼干燥后按质量比1∶0.2~0.5加入铝矾土于600~950℃下煅烧1~2h,得叶腊石。该方法充分利用锂辉石提锂过程中剩余废渣中的主要组分,变废为宝增加经济效益,且能有效解决现有矿石锂加工行业固废环境相容性问题。
1160
0
本发明提供了一种有机磷化合物的用途、锂离子电池电解液及锂离子电池。所述有机磷化合物具有式I所示结构,用作电解液添加剂。所述锂离子电池电解液包括锂盐、添加剂和有机溶剂,所述添加剂选自所述有机磷化合物中的一种或至少两种的组合。所述锂离子电池包括正极、负极和所述锂离子电池电解液。所述有机磷化合物能够增大电解液整体的氧化电位,拓宽电解液的电化学窗口,且其不通过自我的优先氧化分解在正极表面形成固态电解质界面膜,而是吸附在正极表面,抑制正极材料的溶出及正极材料与溶剂、电解质之间的氧化还原反应,含有该有机磷化合物的锂离子电池具有良好的高压循环稳定性。
894
0
本发明公开了一种耐温高分子改性锂电池隔膜的方法及相应锂电池隔膜,将所需耐温高分子材料与有机溶剂充分混合搅拌,配制成一定质量分数的前驱体溶液;将要改性的锂电池隔膜裁剪后固定在静电纺丝喷涂装置上;调节静电纺丝喷涂装置的电压、滚筒转速、溶液推射速度及高压针头与滚筒收集装置距离等参数,将前驱体溶液通过静电喷涂或纺丝至锂电池隔膜上;待达到所需时间后,关闭静电纺丝喷涂设备,将上述锂电池隔膜进行压平和真空烘干,得到改性处理后的锂电池隔膜。本发明提供的改性处理隔膜可以大大提升锂金属电池的电化学性能与安全性能。
本发明公开了一种磷酸锰铁锂类材料及其制备方法以及电池浆料组合物和正极与锂电池。其中磷酸锰铁锂类材料包括具有LiMnxFe1-x-yMyPO4/C结构的活性组分,以及附着在所述活性组分表面的磷酸锂颗粒,其中0<x≤1,0≤y≤0.2,所述M为镁、锌、钒、钛、钴和镍中一种或多种。该磷酸锰铁锂材料通过在具有LiMnxFe1-x-yMyPO4/C结构的活性组分表面附着磷酸锂颗粒,有利于改善磷酸锰铁锂类材料的壁面摩擦角,进而有利于改善相应的电池在使用时的常温循环性能。
941
0
本发明公开了一种包覆磷酸钛铝锂的富锂锰基材料及其制备方法,所述制备方法包括以下步骤:在搅拌的条件下,将氨水和氢氧化钠混合溶液滴加到含有锰盐、钴盐和镍盐的混合溶液中,得到氢氧根前驱体;然后将氢氧根前驱体与适量的锂源反应,即得到锰基层状富锂氧化物;烧结过程中加入B2O3,BaCl2、PbCl2、CaCl2、KF、LiCl、Na2B4O7、Li2B4O7、LiBO2、Na2BO3、NaCl、KCl中的一种或者多种作为助熔剂;随后再将再制得的锰基层状富锂氧化物粉碎,本发明制备方法得到的包覆磷酸钛铝锂的富锂锰基材料,具有高的比容量和优异的循环性能,尤其是其倍率性能和充放电库伦效率;可通过调整烧结工艺和助熔剂的用量控制材料的形貌。
805
0
本发明涉及一种高能量密度锂电池磷酸铁锂正极材料及其制备方法,该制备方法包括以下步骤:(1)含锂盐聚丙烯腈纺丝溶液配制;(2)含亚铁盐聚丙烯腈纺丝溶液配制;(3)纳米纤维无纺布的静电纺丝制备:将含锂盐聚丙烯腈纺丝溶液和铁盐聚丙烯腈纺丝溶液分别注入两个纺丝注射器并摆放于纺丝设备内,静电纺丝得纳米纤维无纺布;(4)纳米纤维无纺布的碳化得磷酸铁锂碳纳米复合材料;(5)后处理:将磷酸铁锂碳纳米复合材料加入到锰盐水溶液中,分散后,进行后续一系列烘干处理,即得。有益效果为,分别配制锂盐和亚铁盐溶液,然后再通过静电纺丝将其交错均匀复合,可保证产品性能均一稳定,同时有利于原料回收;锰盐后处理,有利于能量密度提升。
913
0
本发明提供一种锂离子电池负极极片的预锂方法,包括以下步骤,选取涂胶隔膜和高分子薄膜,分别放置于放卷机上,同时对涂胶隔膜和高分子薄膜进行放卷、且涂胶隔膜的涂胶面与高分子薄膜的附锂膜面相对设置,涂胶隔膜和高分子薄膜通过预压对辊机进行展平,展平后的涂胶隔膜的涂胶面和高分子薄膜的附锂膜面通过履带式热压机进行贴合,对涂胶隔膜和高分子薄膜进行展平,最后对涂胶隔膜和高分子薄膜进行剥离使附锂膜面贴附于涂胶隔膜上,将涂胶隔膜上贴附的附锂膜面与负极极片相贴合并同步进行电芯制作,在电芯制作过程中完成负极极片的预锂。本发明使用涂胶隔膜完成覆膜工艺,负极极片不参与覆膜过程,从而避免负极极片变形和表面涂层脱落的现象。
1203
0
本发明提供一种Li‑O位掺杂锰酸锂的富锂正极材料及其制备方法,该Li‑O位掺杂锰酸锂的富锂正极材料通过将锰源、锂源和掺杂元素锂化合物混合后通过固相烧结、湿法包覆、材料混合和煅烧过程制备而成。制备的正极材料实现了在锰酸锂的Li位和O位进行掺杂,达到了有效抑制析氧,改善倍率性能,保留充电过程形成的氧空位,提高首次效率,提升电池的安全性能,提高材料的能量密度的目的。
1160
0
本发明涉及矿石提锂技术领域,尤其涉及一种从锂辉石中提取锂的方法。该方法包括以下步骤:磨浸,对锂辉石与含钙物质的混合物料边研磨边浸出,形成浆料;其中,所述含钙物质为碳酸钙、氢氧化钙、氧化钙、以碳酸钙为主要成分的物质、以氢氧化钙为主要成分的物质或以氧化钙为主要成分的物质中的一种或多种的混合物;压浸,对磨浸后的所述浆料进行压煮反应,使所述锂辉石中的锂离子浸出。本发明所采用的方法具有对环境友好、较高的锂浸出率、能耗低、工艺简化易操作等多重优势。
804
0
本发明提供一种从镁锂混合溶液中提取锂的方法,涉及碳酸锂提取技术领域。包括以下步骤:(1)将含镁锂混合溶液配制成溶液,加入氧化镁或氢氧化镁,固液分离留澄清溶液;(2)温度为30‑110℃时加入有机胺,固液分离得到氢氧化镁和混合溶液;(3)向混合溶液中加入碳酸根引入剂,固液分离后得到碳酸锂和滤液;(4)滤液中加入氧化钙或氢氧化钙,分离得到有机胺和钙盐混合溶液;(5)加入萃取剂,得到溶有有机胺的萃取剂;(6)加入无机酸,将有机胺盐至少重复步骤(4)、(5)、(6)一次,回收有机胺。本发明在提取碳酸锂的同时制备出纯度很高的氢氧化镁,通入二氧化碳或加入碳酸盐后可形成碳酸锂沉淀;使用无机碱回收有机胺,降低了成本。
970
0
一种被干燥物的高效率深度除水方法及烘烤线,其中除水方法为:在20-60分钟内将高压升温箱体内的温度升到第一预定温度,将高压升温箱体内的压力升到第一预定压力,保持5-20分钟;打开高压升温箱体和真空除水箱体之间的门,将锂离子电池或电池极片移动至真空干箱箱体内,并同时向高压升温箱体装入新的待处理的锂离子电池或电池极片,关闭高压升温箱体和真空除水箱体之间的门;真空除水步骤,保持真空除水箱体内的温度在第一预定温度,抽真空使真空除水箱体内的绝对真空度为200pa至10pa;在N倍于高压升温箱体所用的总时间内,其中,N=2至10中的整数,将待处理的锂离子电池或电池极片的水份降到第一预定水分;进入快速冷却和浓差静置步骤。本发明具有可以与电池极片生产过程中或电池的生产过程中的前后工序实现连续作业的优点。
1084
0
本发明涉及镍钴锰酸锂材料领域,尤其是涉及一种制备镍钴锰酸锂的方法,步骤如下:(1)首先制备多孔氧化铝;(2)将镍源、钴源、锰源和锂源按(1.1~1.3):(1.1~1.3):(1.1~1.3):1的摩尔比溶于水中,随后,向水溶液中加入乙二醇,混合均匀后,在73~78℃下加热蒸发,形成溶胶;(3)将步骤(1)得到的多孔氧化铝浸泡于步骤(2)溶胶中,取出后,在820℃~850℃下烧结9~10h,再浸入溶胶,再烧结,如此重复6~8次,得到负载镍钴锰酸锂的多孔氧化铝;(4)将负载镍钴锰酸锂的多孔氧化铝浸入6~8mol/L碱性溶液中65~70min;(5)过滤后,用水和乙醇清洗,蒸发结晶,然后球磨筛分,得到镍钴锰酸锂产品。优点:镍钴锰酸锂粒径均匀,形貌结构一致。
802
0
本发明公开了一种用于锂离子电池正极的钴酸锂及其制备方法。本发明制备的钴酸锂,比例式为LixCoyMzO2,M是Co以外的过渡金属元素或者碱土类金属元素的一种或两种,以S表示钴酸锂中除锂、钴以外所有金属元素的平均化合价,则该正极材料钴酸锂中四种元素的摩尔比为x : y : z : 2,且+2≤S< +2.5,0.9≤x≤1.1,0.8≤y≤1.1,x+3y+S×z=4。本发明制备的钴酸锂具有大体积容量密度、高安全性、稳定的充放电循环性能和高压实密度。
1199
0
一种钛酸锂包覆三氧化二铁锂离子电池负极材料的制备方法,属于锂离子电池能源材料技术领域,本发明利用凝胶溶胶法先制备出二氧化钛包覆三氧化二铁的中间产物,然后将这种中间产物在锂碱性水溶液中水热条件下转化成钛酸锂包覆三氧化二铁的产物。本发明方法操作简便,条件易控。制成的产品综合了三氧化二铁的高储锂容量和钛酸锂的优良的充放电循环性能,而且结构稳定。
804
0
本发明公开一种锂离子电容器,其正极电极物质层中的活性物质为双电层型储能炭材料,负极电极物质层中的活性物质为嵌锂型储能材料,电解液包括可溶锂盐和溶解有可溶锂盐的非质子有机溶剂;所述锂离子电容器开路电压处于最高工作电压时电解液浓度为x,开路电压处于最低工作电压时电解液浓度为y,同体系电解液在‑20‑60℃的最大电导率浓度值为z,三个浓度值的关系为x≤z≤y。所述的锂离子电容器,在最低工作电压和最高工作电压之间工作时,其电解液的浓度变化对应于电导率值较高的浓度范围,较大限度利用了电解液离子导电能力最高的区间,因而锂离子电容器具有较低的内阻和更为优异的功率特性。
本发明公开了一种三电极锂离子电池锂沉积的预测方法、装置、设备及介质,其预测方法包括:建立三电极锂离子电池的电化学‑热耦合模型;根据三电极锂离子电池不同倍率实测充电数据标定电化学‑热耦合模型;根据电化学‑热耦合模型获取满足第一边界条件的第一充电电流值和实测判定点的第一取值;实测判定点为负极与参比电极电压;第一边界条件包括充电电压为上限截止电压和仿真判定点的取值为第一阈值;仿真判定点为负极与隔膜的界面处固相电势与液相电势的差值;将实测判定点的第一取值作为新的第一阈值再次仿真;若电化学‑热耦合模型的实测预判点的取值小于新的第一阈值,则存在锂沉积现象。本发明的方案,便于准确预测锂离子电池锂沉积。
1013
0
本发明公开了一种锂离子电容器正极片,该锂离子正极片包括活性材料、导电剂、粘结剂、集流体,其中正极活性材料为表面功能化石墨烯、纳米活化石墨烯材料、石墨烯/金属氮化物复合材料,集流体为开孔率30~50%的可以自由穿梭锂离子的多孔集流体。该正极片具有比表面积高、吸附电荷容量高、导电性好的优点,可以有效提高锂离子电容器的能量密度和功率密度。本发明还公开了一种使用该正极片的锂离子电容器,该锂离子电容器包括正极、负极、隔膜、电解液及具有可以实现向负极预嵌锂功能的辅助电极。
1041
0
本发明公开了一种锂离子电池钴酸锂正极材料的制备方法:纯水为底液,在硝酸钴溶液中掺入氯化镁,混合均匀,将硝酸钴、氯化镁和碳酸氢铵溶液连续并流泵入底液中,发生沉淀反应,得到固溶体掺杂Mg的球形碳酸钴;用类似方法制备固溶体掺杂Al的球形碳酸钴;调节底液的碱度,在硝酸钴溶液中掺入TiO2和表面活性剂,反应得到固溶体掺杂Ti的球形碳酸钴;将上述固溶体掺杂Mg的球形碳酸钴、溶体掺杂Al的球形碳酸钴、固溶体掺杂Ti的球形碳酸钴与碳酸锂四者焙烧,得到锂离子电池钴酸锂正极材料。本发明制备的锂离子电池正极材料,在具有高能量密度的同时,具有良好的循环稳定性,用于锂离子电池时,比容量高,循环稳定性好,使用寿命长。
中冶有色为您提供最新的有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日