1029
0
本发明公开了一种铌锆碳合金铸锭的制备方法,包括以下步骤:一、将铌粉、锆粉、碳化铌粉进行混合;二、将混合粉末在真空烧结炉中进行烧结;三、将烧结条进行捆绑,然后进行焊接;四、进行第一次真空电子束熔炼;五、进行第二次真空电子束熔炼;六、将二次合金铸锭经扒皮至表面无肉眼可见缺陷,得到成品铌锆碳合金铸锭。本发明通过将铌粉、锆粉、碳化铌粉混合后进行烧结形成烧结条,不仅降低了制备合金的原料成本,而且使得制备的铸锭成分均匀性好,脱除原料中带有的氧,减少了熔炼次数,采用低成本的原料,解决了合金原料贵,成分分布不均的问题,极大降低了原料的成本,有效提高了成分的均匀性,制备出的铸锭成本较低,均质性好。
1222
0
本发明公开了一种钴铁合金/多孔碳复合电磁波吸收材料的制备方法,具体为:首先,将遗态材料烧结,得到多孔碳,再对多孔碳进行预处理,之后将多孔碳浸渍于钴铁混合浸渍液中,超声处理,干燥,放入水热反应釜中进行水热反应,再用去离子水将其洗涤至中性,干燥,放入真空烧结炉中进行烧结,得到钴铁合金/多孔碳复合电磁波吸收材料。本发明的方法,利用自身材料中碳的还原性,通过原位还原法还原钴铁氧体得到钴铁合金,工艺简单无须其他物质作为还原剂。
896
0
本发明公开了一种铜钨与钢的焊接方法,包括S1、首先按照设计要求加工钢坯和铜钨合金坯,然后进行机械打磨、清洗和干燥处理,得到钢母材和铜钨合金母材;S2、将钢母材和铜钨合金母材进行装配,然后向钢母材和铜钨合金母材之间缝隙填充铜粉,最后将装配好的钢母材和铜钨合金母材置入石墨坩埚中;S3、将石墨坩埚置入真空炉内进行真空烧结处理,得到铜钨钢合金烧结件,然后将铜钨钢合金烧结件进行表面喷砂、淬火处理,即可得到铜钨钢合金焊接件;本发明工艺设计合理,可操作性强,有效提高了铜钨与钢的焊接强度,促进了电力电子行业的发展。
1233
0
本发明公开了一种多芯MgB2/Fe/Cu超导线材的制备方法,该方法为:一、制备前驱粉末;二、将前驱粉末装入纯铁管中,然后装入第一无氧铜管中,制得装管复合体;三、对装管复合体进行旋锻和拉拔处理得到单芯线材;四、将铜铌复合棒与六根单芯线材置于第二无氧铜管中进行二次组装得到二次复合棒,对二次复合棒进行旋锻拉拔和孔型轧制相结合的加工处理,得到多芯MgB2/Fe/Cu线材;五、将线材两端密封后置于真空炉中进行真空烧结,得到多芯MgB2/Fe/Cu超导线材。本发明方法的多芯MgB2/Fe/Cu超导线材在20K,1T时,临界电流密度Jc达到1.8×104A/cm2以上,符合多芯MgB2超导线材实用化的要求。
784
0
本发明公开了一种多孔钽膜的制备方法,包括以下步骤:一、将钽粉加入到聚乙烯醇缩丁醛溶液中,得到钽粉浆料;二、将钽基体进行打磨,然后采用去离子水进行清洗,得到清洗后钽基体;三、将清洗后钽基体进行化学抛光处理,得到抛光后钽基体;四、将钽粉浆料喷涂到抛光后钽基体表面,得到钽膜生坯材料;五、将钽膜生坯材料进行真空烧结,在钽基体表面得到多孔钽膜。本发明通过在钽基体表面进行喷涂钽粉浆料后烧结,通过浆料浓度和喷涂压力的调控,实现了在钽基体表面获得单分散多孔钽膜,有效地增大了钽基体的表面积,促进了钽基体在不同领域的应用,拓展了钽金属的应用环境。
本发明公开了一种高孔隙率富Al相多孔Ni‑Al金属间化合物的制备方法,该方法包括:一、将Ni‑Al预合金粉与碳酸氢铵混合得到混合粉末;二、将混合粉末进行压制得到圆片状压坯;三、将圆片状压坯进行真空烧结得到高孔隙富Al相多孔Ni‑Al金属间化合物。本发明采用Ni‑Al预合金粉直接压制烧结,孔隙的形成结构由造孔剂的含量决定,无需Ni、Al元素粉混合后再进行烧结,缩短了扩散时间,避免通过柯肯达尔扩散造孔,实现了通过造孔剂获得不同孔隙率及孔径的搭配,满足不同使用功能的要求,且避免了自蔓延和反应烧结方法的不可控因素,提高了制备效率,能高效、稳定地获得所需富Al的NiAl3和Ni2Al3相,应用于催化、能源及过滤领域。
922
0
本发明公开了一种抑菌材料的制备方法,涉及钛合金材料制备领域。该制备方法包括:将钛粉与铜粉按质量比为97:3混合后,加入其总重量1.2‑2倍的助磨剂,并进行真空搅拌混匀;将混匀物料加入到高能球磨机中,在惰性气体保护及转速为1500转/分钟的条件下,按球料质量比为6:5对混匀物料进行球磨4小时;在真空烧结炉中,对球磨粉进行热压力烧结3小时,其中温度为750‑850℃,压力为20‑30MPa;冷却至室温后,切割,即得。本发明提供的抑菌材料的制备方法,不仅能使钛粉与铜粉表面得到改性,避免钛粉与铜粉发生“团聚”现象,而且能使钛粉与铜粉的晶粒结构发生变化,有利于铜粉与钛粉的纳米化,从而实现铜粉在钛粉表面均匀及稳定地分散,提高了Ti‑3Cu合金抑菌性能的稳定性。
1201
0
本发明公开了一种钛铌钽锆合金的制备方法,以Ti粉、Nb粉和Ta粉为原料,采用粉末冶金方法依次进行混粉、等静压和烧结,制备得到Ti‑Nb‑Ta中间合金,其中,粉末冶金方法进行混粉时依次进行手动混粉和机械混粉,手动混粉3~6次,机械混粉2~4h;真空烧结时,烧结温度为1100℃~1300℃,保温2~4h;将Ti‑Nb‑Ta中间合金与混合料进行压制,得到电极块并组焊为自耗电极;其中,混合料由0级海绵钛颗粒和工业级HZr‑1海绵锆颗粒组成;将自耗电极进行至少四次真空自耗熔炼,每次真空自耗熔炼时真空度低于10‑1Pa,得到Ti‑Nb‑Ta‑Zr合金铸锭;本发明解决了在制备Ti‑Nb‑Ta‑Zr合金熔炼过程中Ta、Nb元素难溶的问题。
899
0
本发明提供了一种自愈合YSZ陶瓷热障涂层材料,由以下摩尔百分比的成分组成:YSZ陶瓷90%~97%,SiB61.2%~7%,金属硅化物0.9%~6%。本发明还提供了一种制备该材料的方法,包括以下步骤:一、将YSZ粉、SiB6粉和金属硅化物粉末球磨混合均匀后过筛,得到混合粉;二、冷等静压成型,得到粉末压坯;三、进行真空烧结处理,得到自愈合YSZ陶瓷热障涂层材料。本发明采用SiB6和金属硅化物为自愈合相,充分利用自愈合相氧化后的体积膨胀和氧化产物的流动愈合裂纹,同时阻止裂纹向粘结层和镍基高温合金基体扩展,能够显著提高热障涂层的服役寿命和可靠性。
903
0
一种钛纤维多孔材料的制备方法。本发明公开了本发明提出了一种利用钛丝拉拔成纤维状,经过编织、加压成型后制成一种具有纤维直径、孔隙率可控的钛纤维多孔材料的制备方法。材料制备后,经过酸洗去除钛纤维多孔材料表面的氧化物,然后经过真空烧结炉进行高温烧结。通过采用本发明的方法,获得一种烧结钛纤维多孔材料,钛纤维多孔材料各项性能大幅提高,为实现产品工业化提供了重要的依据。
1177
0
本发明提供了一种低频吸声材料的制备方法,包括以下步骤:一、将铝粉与聚乙烯醇水溶液混合均匀,得到浆料,然后将浆料均匀涂覆于铝箔表面;二、选取多层铁铬铝纤维多孔材料;三、将选取的铁铬铝纤维多孔材料按顺序叠放,并在每相邻两层铁铬铝纤维多孔材料之间均插设涂覆有浆料的铝箔,得到待烧结坯料;四、将待烧结坯料装入烧结模具中,放入真空烧结炉中烧结,得到低频吸声材料。本发明制备的吸声材料在频率为50Hz~500Hz的条件下的平均吸声系数为0.25~0.35,吸声性能优良,可广泛应用于具有低频吸声要求的精密电子元器件领域或其他消声场所。
1139
0
本发明公开了一种钛钼合金的制备方法,以Ti粉和Mo粉为原料,采用粉末冶金方法依次进行混粉、等静压和烧结,制备得到Ti‑Mo中间合金;其中,粉末冶金方法进行混粉时依次进行手动混粉和机械混粉,手动混粉3~6次,机械混粉2~4h;真空烧结时,烧结温度为1100℃~1300℃,保温2~4h;将Ti‑Mo中间合金与海绵钛进行压制,得到电极块并组焊为自耗电极;其中,海绵钛为0级或1级海绵钛颗粒;将自耗电极进行至少三次真空自耗熔炼,每次真空自耗熔炼时真空度低于10‑1Pa,得到Ti‑Mo合金铸锭;结合粉末冶金法和合金熔炼法制备出组织成分均匀的钛钼合金。
863
0
本发明提供一种基于陶瓷增材制造的多孔植入物的制备方法,包括如下步骤:使用增材制造方法制备具有梯度微观结构的多孔植入物模型的陶瓷负型模具;通过压力机压制将金属粉填充陶瓷模具,获得初步的金属多孔植入物,真空烧结,增强植入物强度;将植入物与陶瓷模具的混合体置入可溶解陶瓷模具的溶液中,得到独立的金属植入物;利用化学气相沉积方法在金属植入物表面沉积金属涂层;最后利用阳极氧化方法在金属植入物表面成形金属氧化物纳米管结构。该方法克服了传统多孔植入物制备方法微观结构不可控和直接激光增材制造难度大、设备要求高的不足,且能实现表面结构的纳米化,开辟具有宏微纳结构的多孔植入物制备的新途径。
本发明公开了一种采用真空自耗电弧熔炼TiCu50母合金材料的制备方法,主要包括:步骤(1)原材料的混合:按重量百分含量计,原料中各元素百分含量为:Cu50%,Ti050%,按比例称取所需原料,在混料机内进行混合;步骤(2)压制:将混合好的混合粉装入胶套内并进行机械震动、擀料、反向墩料后,采用冷等静压法进行压制,然后进行保压处理;步骤(3)烧结:将压制好的自耗电极装入真空烧结炉内进行烧结,控制烧结温度、保温时间、真空度;步骤(4)熔炼:将烧结后的自耗电极装入真空自耗电弧熔炼炉内进行熔炼;本发明制备的TiCu50母合金材料气体含量低、夹杂物少、并且组织成分均匀,无Cu、Ti富集等宏观、微观缺陷。
923
0
本发明提供一种Cr3C2‑NiCr金属陶瓷块体材料及其制备方法,包括以下步骤:步骤1,按照Cr3C2中,Cr和C原子比为3:2,NiCr相中Ni和Cr原子比为4:1,NiCr相的质量百分比为10‑30%,将Cr粉、C粉和Ni粉进行球磨混合;步骤2,将球磨后的Cr粉、C粉和Ni粉的混合粉进行模压成型,得到坯体;步骤3,将坯体进行真空烧结,烧结时真空度为0.001‑0.1Pa,烧结温度为1275℃,得到Cr3C2‑NiCr金属陶瓷块体材料。本发明制备得到Cr3C2‑NiCr金属陶瓷,主要力学性能指标良好,力学性能均明显提高。
1028
0
本发明公开了一种多孔钛及钛合金的制备方法,包括如下步骤:将Ti金属粉末和合金粉末混合均匀,所得混合粉末中Ti金属粉的质量百分比为45%~95%,合金粉末的质量百分比为55%~5%;将所得混合粉末装入石墨或碳化硅模具中,置于真空烧结炉中进行烧结,真空度0.1~10Pa,单向压力200~1000MPa,升温速率20~100℃/min,烧结温度800~1400℃,烧结10~60min,再随炉冷却到室温取出,得合金坯体;将所得的合金坯体作为阳极进行电化学溶解合金金属粉末溶解金属丝模溶解,得多孔钛。本发明所得的多孔钛的孔隙分布均匀,大小排列可控的,可应用于医用多孔太及钛合金材料和钛及钛合金滤芯材料。
1015
0
本发明公开了一种以多孔钛为基体的钛电极材料,包括钛基体和钛基体表面涂覆的金属氧化物涂层,所述钛基体为孔隙度为20%~50%的板状、管状、带状或棒状的多孔钛基体;所述金属氧化物涂层具有纳米结构。该钛电极材料的制备方法包括以下步骤:一、真空烧结制备多孔钛基体,并对多孔钛基体进行表面预处理;二、配制金属氧化物涂层涂液;三、将涂液刷涂于多孔钛基体上,烘干后进行热分解;四、重复步骤三至需要的涂层厚度,然后进行热处理得到以多孔钛为基体的钛电极材料。本发明的钛电极材料表面涂覆有纳米结构的金属氧化物涂层。本发明制备的钛电极材料具有优异的催化活性、良好的传质效果和较长的使用寿命。
1069
0
本发明公开了一种反应烧结碳化硅陶瓷薄壁管、制备方法及其应用,包括以下质量百分比的原料:炭黑5~20%,碳化硅粉末75~94%和分散剂1~5%;所述的碳化硅粉末由粒径为0.4~0.6μm、纯度为99.4~99.6%的α型碳化硅粉末一和粒径为170~190μm、纯度为99.75~99.85%的α型碳化硅粉末二混合组成。所述的反应烧结碳化硅陶瓷薄壁管的制备方法包括:将原料注入贴有网状聚合物的石膏模具中,依次进行放浆、脱模和压制得到素坯,然后进行烘干和真空烧结即得。本发明通过研究成型工艺,在注浆过程中引入一定密度的网状聚合物,利用其强度,使放浆过程中保证其形变量较小,最终达到产品的外形尺寸要求。
本发明公开了一种化学镀覆NiMo改性的TiB2‑TiC颗粒增强高锰钢基复合材料及其制备方法,对复合陶瓷颗粒的表面进行预处理,采用化学镀覆方法得到镀镍钼镀层的TiB2‑TiC复相陶瓷颗粒;然后与镍钼粉末以及硼砂进行混合搅拌,经过定型、烘干处理后得到蜂窝状预制体;随后对蜂窝状预制体进行真空烧结处理;降温后放入砂箱中浇铸金属液,冷却后得到颗粒增强高锰钢复合材料。本发明制备的耐磨复合材料,陶瓷表面金属化有效改善复合材料界面结合性能和耐磨性,具有高的抗冲击磨损性能,又保证在苛刻工况下的服役安全性,通过在陶瓷颗粒引入金属NiMo镀层,使复合材料界面结合由简单机械结合转化为冶金结合,具有较高的结合强度和抗冲击强度,满足高负荷工况环境的需求。
1250
0
本发明公开了一种超高精度纤维毡及其制备方法,包括以下步骤:步骤1)将超细纤维进行合股;步骤2)进行无纺铺制形成超细纤网;步骤3)进行均匀性检验;步骤4)制作纤维毡坯;步骤5)利用平整机内进行碾压;步骤6)送入真空烧结炉进行扩散焊接;步骤7)进行二次烧结;步骤8)进行平整,使用泡点检测仪和无损检测仪测量其泡点压力和透气性能;步骤9)将纤维毡坯进行折波后焊接为滤管,折波后对其进行泡点检测符合要求即为超高精度纤维毡。
979
0
本发明公开了一种真空自耗电弧熔炼熔滴短路控制方法,S1混料:按质量配比称取铜粉和铬粉混合;S2压制:将混合粉末压制出合金棒料;S3烧结:将合金棒料放入真空烧结炉中烧结;S4电弧熔炼:将合金棒料放入真空自耗炉中,合金棒料上端接电极杆,下端延伸至水冷铜模底部,施加电压进行熔炼,熔炼电流为2‑4KA,熔滴滴数为0.1‑0.7d/S,水冷铜模外侧缠绕有线圈,线圈会在熔炼过程中产生一个沿真空自耗炉轴向向上的纵向稳弧磁场,本发明通过短路控制的高温电弧使自耗电极快速均匀的发生层状消熔并滴到水冷结晶器底部,通过控制熔滴数来控制熔炼速度,并配合快速冷却实现铜铬合金铸锭凝固,得到均匀细小的铜铬合金,无气孔、富集等宏观微观缺陷。
887
0
提供一种钽2.5钨合金的制备方法,将钽粉和钨粉按比例配制后放入滚筒式混料机内混合24小时;将混合好的粉料过120目筛得细粉料;将细粉料用500吨油压机压制成合金棒条;将合金棒条放入真空烧结炉内烧结得粗锭坯;将粗锭坯用真空电子束炉至少两次熔炼制成合金锭坯;将合金锭坯放入高频炉内,加热至1400℃后取出多次锻造,得成品锭坯。本发明通过钽粉和钨粉的充分混合和多次熔炼,解决了锭坯组织不均匀的问题,改善了坯料易脱落和发脆的难题。
1025
0
本发明提供了一种铂铱锆钨钍合金焊料,由以下质量百分比的成分组成:Ir 15%~18%,Zr 0.5%~1%,W 0.1%~0.5%,Th 0.04%~0.08%,余量为Pt和不可避免的杂质。本发明还提供了一种制备该焊料的方法,包括以下步骤:一、采用湿法球磨的方法将Pt粉、Ir粉、Zr粉、W粉和WTh4粉混合均匀,烘干得到混合粉末;二、进行等静压成型,得到压制坯料;三、进行真空烧结处理,得到烧结坯料;四、加热后进行多道次加工,得到铂铱锆钨钍合金焊料。本发明焊料以铂为主体,添加铱和锆、钨和钍元素,主要用于焊接铱合金元器件,能够大幅提高焊缝的力学性能,在酸性、碱性、氧化和高温条件下的使用周期长。
1206
0
本发明公开了一种钛包银电解极板的制备方法,具体为:首先将钛板制成一面开口的钛盒,再分别对钛盒和银板进行预处理,除去氧化物,再将预处理过的银板放入预处理过的钛盒中,再将置有银板的钛盒放入坩埚中,将坩埚再放入真空烧结炉中进行熔浸烧结,使熔化后的银板和钛盒内壁充分接触,再随炉冷却,获得钛包银电解极板。能满足贵金属电解精炼过程中对电解极板导电性和耐蚀性的要求。
746
0
本发明公开了以Ti粉和Ta粉为原料,采用粉末冶金方法依次进行混粉、等静压和烧结,制备得到Ti‑Ta中间合金;其中,粉末冶金方法进行混粉时依次进行手动混粉和机械混粉,手动混粉3~6次,机械混粉2~4h;真空烧结时,烧结温度为1100℃~1300℃,保温2~4h;将Ti‑Ta中间合金与混合料进行压制,得到电极块;其中,混合料由0级或1级海绵钛颗粒和工业级HZr‑1海绵锆颗粒组成;将多个电极块组焊为自耗电极,将自耗电极进行至少四次真空自耗熔炼,得到Ti‑Zr‑Ta合金铸锭;本发明可以通过控制钛合金的相转变温度范围及稳定性来调节钛合金的超弹性和形状记忆效应。
826
0
本发明公开了一种钴铁氧体/多孔碳复合电磁波吸收材料的制备方法,具体为:将生物遗态材料切割成块状,放入真空烧结炉中烧结,得到多孔碳,对多孔碳进行预处理,再将预处理的多孔碳浸渍于钴铁混合浸渍液中,超声处理,干燥,得到混合物,最后将混合物转移到热水反应釜中进行水热反应,干燥,得到钴铁氧体/多孔碳复合材料。本发明方法制备出的钴铁氧体/多孔碳复合电磁波吸收材料具有多孔结构,且电磁吸收能力强;与传统磁波吸收材料制备工艺相比,原材料来源广泛、成本低、工艺简单环保。
833
0
本发明公开了一种采用真空自耗电弧熔炼铜钛系列合金材料的制备方法,涉及铜钛合金制备技术领域,包括S1、原材料配比:材料组成及其质量百分比为:铜粉0.5‑99.5%,海绵钛99.5‑0.5%;S2、原材料混合:按照比例称取所需原料,在混料机进行混合;S3、压制:将混合料装入模具内墩粉,将墩好粉的模具放入冷等静压机进行压坯;S4、烧结:将压制好的坯体装入真空烧结炉中进行烧结;S5、熔炼:将烧结后的坯体作为自耗电极装入真空自耗电弧熔炼炉内进行熔炼,本发明制备出的合金材料具有气体含量低,夹杂少,组织均匀,无铜、钛富集等微观缺陷。
1243
0
本发明公开了一种低盐酸不溶物金属铬粉的制备方法,包括以下步骤:S1铬粉制备:将铬块进行低温研磨破碎制粉,温度控制在‑150~0℃,得到铬粉;S2混粉:在制备完成的铬粉中添加脱氧剂,添加比例为0.1~5 wt%,保持物料混合均匀,得到混合粉;S3压制:将混合粉装填至模具中,利用模压成型压制成坯块,压力参数为5~20 MPa;S4烧结:将压制好的铬坯装入真空烧结炉内进行烧结;S5制粉:将烧结后铬坯进行低温研磨破碎制粉,温度控制在‑150~0℃,得到低盐酸不溶物金属铬粉。本发明所制备的铬粉其盐酸不溶物含量相对于传统工艺所制备的铬粉明显降低,明显提升铬粉冶金制品的使用效果及寿命。
984
0
本发明公开了一种氧化锌基铂粒子催化剂的制备方法,具体为:首先,以氯化锌为锌源,以草酸为沉淀剂,制备草酸锌悬浊液;之后,以氯化铂为原材料,以氯化锌为掺杂剂,形成铂锌镀膜液,并涂覆在草酸锌表面,形成镀膜草酸锌,再静置烧结,得到介孔型镀膜草酸锌颗粒;最后,将介孔型镀膜草酸锌颗粒进行超声洗涤,并在真空烧结炉中烧结,即可得到氧化锌基铂粒子催化剂。利用氧化锌作为掺杂剂的同时,也作为载体,形成掺杂剂与载体的一体化,不仅能够保证铂粒子的稳定连接性,形成多维夹持,增强贵金属与载体间的结合力,延长催化剂使用寿命;而且能够利用氧化锌的电子传导性能,有效的提升催化剂的活性。
1195
0
一种颗粒增强钛基复合材料的粉末冶金方法,涉及一种粉末冶金方法,特别是含有颗粒增强相的粉末冶金钛基复合材料的粉末冶金方法。其特征在于在采用粉末冶金钛合时,在配制的粉末中加入碳化铬,加入量以C含量计为5Vol%-15Vol%,混料后,经冷等静压成型,经过1200℃~1300℃、1~6h真空烧结制得含颗粒增强相TiC粒子钛合金。本发明的粉末钛基复合材料在烧结过程中,钛与碳化铬发生原位合成反应,生成TiC颗粒增强相,由于第二相粒子的出现,细化了合金晶粒,阻碍了合金中裂纹的扩展,从而提高了合金的性能。
中冶有色为您提供最新的陕西有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日
2026年01月23日 ~ 24日