808
0
本发明公开了一种耐污抛光砖及其制造方法,制造方法包括以下步骤:备料→块料破碎→原料除碳风化→块料粉碎→原料均化→配料→球磨→过筛→浆料储备→除铁→过筛→浆料均化→除铁→过筛→备浆→喷雾干燥制粉→过筛→粉料储备→过筛→干粉除铁→冲压备料→冲压成型→干燥→烧成→粗抛→精抛;在原料除碳风化步骤中采用多次急热急冷,模拟风化效果;在干燥步骤中采用持续低温除湿工艺进行干燥;在烧成步骤中采用“翻转法”。其优点是:配方科学,原料配方组合节能降耗明显;工艺先进,提前将原料中的有机物除去,砖坯采用“冷法干燥”,防止在砖坯中形成气孔,提高抛光砖的烧结致密度,降低整砖吸水率,不使用防污剂也可大幅提高砖面的耐污性能。
954
0
本申请涉及混凝土领域,具体公开了一种收缩率低的抗裂混凝土及其制备方法。一种收缩率低的抗裂混凝土包括胶凝材料、改性细骨料、粗骨料、防水剂和水;改性细骨料的制备方法为:分别破碎陶瓷废弃料、亲水性纤维,然后取特定粒径的陶瓷废弃料作为待用料一,并取特定长度的亲水性纤维作为待用料二;将待用料一与待用料二按配比混合后球磨得到改性细骨料;其制备方法为:将防水剂与胶凝材料均匀混合得到混合料;将混合料加入水中搅拌均匀得到混合浆体;将粗骨料加入混合浆体中,搅拌均匀得到预混物;将改性细骨料加入预混物中,搅拌均匀得到抗裂混凝土。本申请的抗裂混凝土能够提高建筑垃圾的利用率、减少建筑垃圾的产生,并且具有较好的抗裂性能。
1098
0
本发明涉及一种强化溶解法制备的优势硅源,以及使用此硅源制备的沸石分子筛超小纳米晶体,具体公开了其制备方法,包括1)致密硅源浸泡在酸溶液中去除杂质;2)将步骤1)所得材料通过球磨破碎;3)配制甲醇的水溶液,调节pH值至12~14,加入球磨破碎的硅材料,在100~300℃条件下使用溶剂热法溶解,获得硅溶液;4)配制碱金属源溶液,并与(3)中的硅溶液进行混合;5)快速均匀地去除溶剂,获得硅‑碱金属二元均匀嵌入混合物;6)以(5)中制备的硅‑碱金属二元均匀嵌入混合物作为沸石分子筛合成的改良硅源,与合成所需的其他组分进行结晶,可提升结晶速率,以及获得沸石分子筛超小纳米晶体产品。
775
0
本发明公开了一种利用建筑卫生陶瓷冷加工废渣生产多孔砖的方法,其特征在于,它是将建筑卫生陶瓷制品冷加工产生的液体与固体混合废弃物经过脱水、均化,从而获得固体废渣;按一定比例要求添加的粘土、长石(或含长石的岩石)、碳酸盐矿物,放入球磨机中加工成适合细度的浆料,再次经过脱水,掺入颗粒状的废瓷坯,然后采用塑性成型或者半干压成型的方法,获得需要的板状或者是块状的坯体,再经过高温煅烧,使坯体变成具有一定强度的多孔的煅烧制品。本发明方法具有废物利用、符合环保要求的优点。
本发明属于土壤修复技术领域,公开了一种针对土壤重金属污染的磁性生物炭土壤修复剂及其制备方法和在在修复污染土壤中的应用,本发明的磁性生物炭土壤修复剂是经过以下步骤制得的:将富含铁磁性铁/钴/镍化合物的固体废料破碎后进行氯化焙烧;再通过磁选收集磁性粒子;然后将磁性粒子与农业废弃物,或者与农业废弃物和尿素的混合物按比例混合后进行碳化、球磨、磁选得到的。本发明还公开了采用该磁性生物炭对土壤进行修复的方法,采用二次翻耕、二次灌溉的方法,通过磁旋刀分离磁性生物炭和外排漂浮生物炭能够有效去除土壤重金属,为土壤重金属污染的治理提供了新的途径。
1102
0
发明属于陶瓷材料技术领域,具体涉及一种陶瓷浆料及其制备方法。本发明将碳化硅陶瓷粉和分散剂与溶剂混合均匀,加入稀土氧化物粉体后进行球磨,再加入烧结助剂和消泡剂后继续球磨,得到陶瓷浆料。本发明制备得到的陶瓷浆料流动性好,具有较强的稳定性和均匀性,色彩丰富多样,且固含量达到65%以上。
1033
0
本发明公开了一种土壤钝化改良剂及其制备方法。所述土壤钝化改良剂是采用微湿球磨法将膨润土、硅藻土、氧化镁、氧化铁和腐植酸粉碎后喷入所述物料2~5%的水分,充分研磨2~4小时得到。该土壤钝化改良剂通过膨润土、硅藻土等天然矿物组份及氧化镁减少土壤重金属活性、降低有效态重金属浓度;通过腐植酸组份改善土壤透气性能,利用腐植酸中的醌基、醇羟基、羧基、羰基等官能团,在络合重金属并降低其有效态的同时,补充植物必需的氮、硫、钾和磷及微量元素,同时利用富含的黄腐植酸螯合重金属,降低植物对重金属的吸收量,所述土壤钝化改良剂在重金属污染土壤修复中有着广泛的应用。
927
0
本发明涉及印刷电子材料领域,具体的是一种可利用丝网印刷技术印制精确自限温柔性电热膜的丝印导电油墨的方法。先利用球磨处理工艺制备好中间产物1和中间产物2,再利用加热搅拌工艺制备好中间产物3,最后通过常规三辊研磨加工工艺制成导电油墨。利用这种导电油墨印制的发热膜在通电情况下发热,且持续通电情况下,发热膜温度可以在设定温度(36℃、37℃、38℃、39℃、40℃、41℃、42℃)以±0.5℃的控温精度保持稳定。利用该导电油墨印制的电热膜可直接接触人体皮肤使用,具有加热供暖、体感舒适、安全可靠的特点,可作为可穿戴电加热设备在个人冬季保暖、低温劳动保护、医疗救护、养生理疗等领域获得广泛应用。
893
0
本发明属于功能纤维材料领域,公开了一种石墨烯多功能粘胶纤维及其制备方法。将石墨烯及功能纳米粒子的球磨侵蚀打孔预处理后与粘胶纤维纺丝原液混合,通过湿法纺丝,得到初生纤维,将所得初生纤维经牵伸后依次进行切断、后处理,得到石墨烯多功能粘胶纤维。本发明能够赋予粘胶纤维负离子、远红外、抗菌防螨、磁性、除甲醛、除异味、抗辐射防紫外线等健康功能。且通过对石墨烯及功能纳米粒子进行球磨侵蚀打孔预处理,可以显著提高石墨烯及功能纳米粒子与粘胶纤维基体的相容性及分散稳定性,从而保证相应功能效果持久、稳定的发挥。
976
0
本发明涉及一种陶瓷氧化物回收粉的造粒方法,所述方法包括以下步骤:(1)将陶瓷氧化物回收粉与纯水混合,加入球磨机中,然后加入分散剂、消泡剂;(2)搅拌球磨,然后加入粘结剂继续搅拌,得到浆料;(3)将浆料进行离心喷雾干燥,然后脱脂烧结,得到烧结后的回收粉;(4)将烧结后的回收粉进行筛分,得到符合原料粉要求的陶瓷氧化物回收粉。本发明将等离子喷涂或其他热喷涂工艺中产生的未沉积陶瓷氧化物回收粉重新回收、造粒,使其再次满足等离子喷涂工艺对复合陶瓷氧化物粉粒度分布、颗粒形貌、纯度、组分等的要求;使陶瓷氧化物粉体资源得到高效利用,有效降低等离子喷涂工艺或其他热喷涂工艺的原料成本。
960
0
本发明涉及一种改性生物炭吸附剂的制备方法和应用,其制备方法包括以下步骤:S1、将生物炭进行洗涤、烘干、球磨;S2、取球磨后生物炭,加入碱溶液并加热回流;固液分离,干燥后获得碱活化活性炭;S3、将碱活化生物炭平铺于温控电热板上并置于紫外灯下照射;S4、照射结束停止加热,冷却至室温,获得改性生物炭。本发明的方法制备得到的改性生物炭,其比表面积和含氧基团数量,显著高于未改性处理的生物炭,提升了吸附重金属的活性位点,能够降低土壤中重金属的浸出浓度,具有环境可接受性,且本发明的制备方法操作简单,成本低,且无二次污染,具有广阔的应用前景。
1171
0
本发明涉及陶瓷领域,具体是一种强化瓷质炖盅的制备方法。本发明的坯料组成包括:机锥高岭土、淘洗高岭土、石英、氧化铝、煅烧滑石、钾长石;釉料组成包括:钾长石、石英、方解石、煅烧滑石、淘洗高岭土、煅烧氧化铝、氧化锌;强化瓷质炖盅的制备方法包括:准备坯料及釉料原料、将坯料中原料混和后加清水进行湿法球磨、将釉料中原料混和后加清水混和进行球磨、用坯料和清水混合的泥浆清洗石膏模具表面降低碱性、取坯料滚压成型、用清水和毛刷洗刷泥质胎体表面、用釉料加清水调配釉浆浸釉、将经施釉的泥质胎体烧制成强化瓷质炖盅。本发明目的在于提供一种强度、耐摩擦、寿命等方面优于陶质炖盅、普通瓷质炖盅的强化瓷质炖盅的制备方法。
1178
0
本发明公开了一种耦合改性高光催化效率的纳米二氧化钛浆料及其制备方法,该纳米二氧化钛浆料主要由纳米二氧化钛粉体、分散剂和水组成,还可以包括活性碳、铁黑、硅藻土、微胶囊缓释剂;其制备方法为将分散剂溶于水中,再转移至纳米二氧化钛粉体,然后进行分散和球磨,制得纳米二氧化钛浆料。本发明的纳米二氧化钛浆料不仅在紫外光下具有优异的光催化效率,在日光下也具有较高的光催化效率。
763
0
本发明涉及锂离子电池电极材料的制备方法,特别是涉及一种尖晶石型钛酸锂的制备方法;本发明先将表面活性剂、锂源、钛源分散到无水乙醇中球磨得到前驱物,然后再对前驱物进行烘干、预烧、研磨、压片、煅烧、再研磨等处理,最后得到所述尖晶石型钛酸锂;本发明通过将表面活性剂作为分散剂以使原材料混合得更均匀、分散得更好,进而可以在较低的煅烧温度和较短的煅烧时间内合成粒径小且均匀、电化学性能良好的钛酸锂材料;本发明不仅合成的产品纯度高、合成的材料分散性能好、粒径小,而且工艺简单、生产效率高、环境友好、易于大规模化生产。
887
0
本发明提供了一种钛酸锂复合材料的制备方法,属于锂离子电池电极材料领域;包括以下步骤,且以下步骤顺次进行:步骤S1、将钛源、锂源、铍源按照一定的比例混合后充分研磨,得到A;步骤S2、将A放入管式炉内进行焙烧冷却,至室温后得到B;步骤S3、将B再次进行研磨得到C;步骤S4、将C放入管式炉中进行反复煅烧得到D;步骤S5、将D进行球磨,即得最终产物E。本发明制备得到了一种具有较高导电性、较高可逆比容量的钛酸锂负极材料,提高了钛酸锂电池的导电性,并改善了钛酸锂电池的充放电性能。
1146
0
本发明公开了一种宏量制备单原子催化剂的方法,包括如下步骤:第一步:机械球磨:利用机械球磨的方法使贵金属盐分散在稀释金属盐中,得到单原子催化剂前驱体,贵金属盐与稀释金属盐的重量比例1:100‑1:1000;所述稀释金属盐为过渡金属乙酸盐、镧系乙酸盐、过渡金属乙酰丙酮盐、镧系金属乙酰丙酮盐、过渡金属草酸盐、镧系金属草酸盐、过渡金属碳酸盐或镧系金属碳酸盐中的一种或几种混合;第二步:高温焙烧:将第一步所得单原子催化剂前驱体进行高温焙烧,冷却至室温后即可得相应的单原子催化剂。本发明实现了金属单原子材料的宏量制备,具有良好的拓展性和重现性,解决了现有技术中金属含量低、种类少、制备方法复杂等问题。
1149
0
本发明公开了一种纳米泥材料保湿涂层,包括将亚乙基亚胺酮、醋酸乙烯酯‑丙烯酸丁酯共聚乳液进行混合得到乳性混合料,将乳性混合料中添加丙烯酸和甲基丙烯酸甲酯进行高速搅拌混合,得到保湿涂料;将保湿涂料中和添加辅助剂进行高速混合,且混合后的pH值为7.5‑10,得到复合保湿涂料;将硅土、朱泥、电气石、负离子粉、氧化铝、氧化铁、氧化钙通过球磨机进行高速研磨,得到复合粉,将得到复合粉与蒸馏水进行混合处理,得到复合浆料;将复合浆料送至煅烧炉内进行950‑1100℃的煅烧处理。使纳米泥材料保湿涂层内部在保证保湿密封性的同时,具有良好的硬度,可进一步提高纳米泥材料保湿涂层的使用质感,满足工业、建筑等多方向使用。
1150
0
本发明涉及一种陶瓷茶具釉料,属于陶瓷加工技术领域,其中各组分的重量份为SiO2?60~80份、Al2O3?15~30份、CaO1~10份、K2O0~5份、Fe2O3?0.1~2份、TiO2?0~2份、MgO0.1~1份、Na2O0.1~1份,其制备方法是将上述物质按比例倒入搅拌球磨机中混匀后,经揉泥、做坯、印坯、利坯、荡里釉、画坯、施外釉、挖底足、写底款、施底釉、装釉足、满窑、烧窑、开窑、检验和底足打磨后制得;本发明所制陶瓷茶具釉料能广泛适用于居家日用、茶艺餐厅、商务会馆、专业茶社、公共社区活动中心等场所,具有净化和矿化水质的作用。
1076
0
本发明涉及釉料的技术领域,具体公开了一种耐磨、抗菌釉料及其制备方法,所述制备方法通过球磨将磷酸锆载银和氧化锌、三氧化二铋通过颗粒之间的碰撞、碾压等物理方法使其的粒径趋向于一致,并且使其初步混合均匀,获得高温的接触式和催化式抗菌材料,再将制得的粉料A与烧成温度高的氧化铝和刚玉粉球磨,使粉料A充分包裹于氧化铝和刚玉粉的表面,使抗菌材料的烧成温度更高,从而整体提升所述釉料的烧成温度以及抗菌性能;与现有抗菌釉料的800℃的烧成温度而言,本发明制得的釉料其烧成温度高,高达1100~1150℃,使釉料中的玻璃相减少,晶相增多,有利于提升烧成后釉面砖的耐磨度。
1077
0
本发明特指一种用来生产超薄瓷质抛光砖及其制作工艺,其原料按重量百分比组成为长石类熔剂20~40%,粘土类原料20~30%,钙镁质原料0~8%,抗脆剂10~30%,坯体增强剂0.1~1%。也可外加1~20%能发射阴离子和远红外线的陶瓷粉制成功能性超薄瓷质抛光砖。将以上原料通过配料—球磨—过筛—除铁—喷雾干燥制粉—陈腐—压制成型—干燥—烧成—抛光—分级拣选,制成本发明的800×1800×(3~6)MM瓷质砖。坯体中引入了较多的抗脆剂,以保证超薄砖有足够的烧成强度。采用本发明制备的陶瓷坯体具有质轻,节能,能发射阴离子和远红外线的特点,属于新型环保类建筑装饰材料。
1284
0
本发明公开了一种生产铝用预焙炭阳极的粉料质量控制方法,包括以下步骤:沥青焦的前置处理;石油焦的前置处理;沥青焦与石油焦混合和检测;本发明通过分析筛分前粉料和筛后四种粒级粉料的比表面积。粉料的总比表面积大于5.5m2/g,说明粉料过细,将增加成型时沥青用量;小于4.5m2/g,说明粉料过粗,将减少成型时沥青粉料用量,过细或过粗的粉料将造成焙烧后炭阳极的体积密度、空气渗透率、抗压强度等性能指标降低,适时调整球磨机的钢球配比、一级振动筛的目数等设备运行参数,最终将粉料的粒度分布及比表面积控制在规定要求内。
785
0
本发明公开了发泡陶瓷板材的制造方法,包括:(1)选用发泡陶瓷原料,按配方进行配料;(2)将发泡陶瓷原料进行球磨处理;(3)将发泡陶瓷原料进行榨泥处理,得到泥饼,再将泥饼练泥,得到泥条;(4)将泥条进行真空挤出成型,得到坯体;(5)将坯体直接进入烧结窑进行烧成,烧成后的发泡陶瓷的抗压强度≥3.5MPa,体积密度为380‑500kg/m3。采用本发明,可实现湿法烧成,环保节能,且能适用于多种原料配方体系,也能适用多种烧结窑。采用本发明,能够实现缩短烧成周期20‑30%,单线产能提升20%以上,单位产品能耗降低超过30%。
970
0
本发明属于锂离子固态电池技术领域,公开了一种高离子电导率钛酸镧锂固体电解质材料及其制备和应用。该种高离子电导率钛酸镧锂固体电解质材料的制备方法为以锂源、钛源和镧源为前驱物,通过球磨混合、烘干、预烧、球磨破碎、烘干、造粒、压片、烧结等工艺制备成钛酸镧锂固体陶瓷片,然后再进行高温淬火工艺处理,即制得高离子电导率钛酸镧锂固体电解质材料。本发明通过采用一种先烧结后淬火处理的固体电解质制备工艺,可以有效降低钛酸镧锂陶瓷的晶界阻抗,从而提高钛酸镧锂陶瓷固体电解质的离子电导率,达到10‑4~10‑3S/cm的水平。另一方面,该工艺步骤简单易控制,能够有效确保陶瓷降低晶界阻抗,效果显著。
1049
0
本发明涉及一种纳米改性BSAS陶瓷涂料的制备方法及使用方法,其中制备方法为:将四硼酸锂、叠氮钠和金属镁粉在马弗炉中高温反应,得到的产物用盐酸浸泡反应,得到的产物干燥得到改性剂;将改性剂、BaO、SrO、Al2O3、SiO2、Co2O3、ZrO2、B2O3和无水乙醇溶剂配成浆料进行球磨即可。其中使用方法为:先使用浸渍提拉装置将陶瓷基体在所述纳米改性BSAS陶瓷涂料中进行涂覆,再将涂覆后的陶瓷基体进行烧结即可。本发明的纳米改性BSAS陶瓷涂料的制备方法,制备出的陶瓷涂料应用在陶瓷上寿命长防护效果稳定;本发明的纳米改性BSAS陶瓷涂料的使用方法,操作简单,使用成本低廉,涂覆效果良好,涂层不易损坏。
822
0
本发明涉及一种类石墨烯增强建筑陶瓷的制备方法,按建筑陶瓷坯料质量的1%~3%和3~8%分别添加高温淬火石墨和糖类或淀粉类物质,经球磨、喷雾干燥、压制成型、烧成获得建筑陶瓷砖。本发明利用高温淬火和机械球磨结合的方法得到了单层及多层结构氧化类石墨烯材料,并在高温作用下还原为类石墨烯,极大地提高了干坯强度和烧成制品的抗压强度,产品的抗压强度可达95~118MPa。该方法操作简单、快捷、成本低、不引入杂质元素、适用于工业化规模生产,因此具有良好的应用前景。
1185
0
本发明公开了一种钠钾长石粉提纯方法,包括下列操作步骤:步骤S1、原石破碎;步骤S2、清洗除泥;步骤S3、一次磁选;步骤S4、球磨粉碎;步骤S5、浮选除杂;步骤S6、酸洗除杂;步骤S7、废液处理;步骤S8、二次磁选,一种钠钾长石粉提纯设备,所述酸洗除杂设备包括:酸洗仓以及沉淀仓;所述沉淀仓安设于所述酸洗仓一侧,所述沉淀仓与所述酸洗仓相连通,所述酸洗仓一侧设置有酸洗液制备结构,所述酸洗仓上设置有酸洗搅拌结构,所述沉淀仓一侧设置有酸洗液回收处理结构,本发明本发明工艺简单,操作方便,能回收利用废液,提高资源利用率,减少环境污染;并且除杂效果好,能显著提高白度,钾长石砂粉的质量整体达到了较好水平。
881
0
本发明公开了一种防静电瓷砖及其制备方法,其特征在于,它包括主要由陶瓷颗粒和填充陶瓷颗粒间隙的三维导电网络结构构成;制备方法包括:将导电材料进行球磨、烘干及造粒,过30目~600目筛,制备成导电粉体;采用二级混合工艺将第一步所制备的导电粉体按一定比例加入到陶瓷坯料后置于混料机中进行混合,后经多层等径筛孔进行均匀化处理,在陶瓷坯料颗粒表面均匀包覆一导电粉体层;将第二步制备得到的混合粉料压制成形,烧成得到防静电瓷砖。本发明采用陶瓷坯料颗粒表面覆盖一层导电粉体,在瓷砖内部构建导电网络,导电材料用量少,且不受坯料相组成的影响,防静电性能稳定,成本低、经济适用性强,并能够广泛的应用于各种陶瓷砖生产中,生产的陶瓷砖花色品种丰富,美观实用。
748
0
本发明公开了一种纳米铁氧体材料及其制备方法,制备方法包括以下步骤:1)采用Fe(NO3)3、Zn(NO3)2、Ni(NO3)2、Cu(NO3)2为初始原材料,按分子式Ni(1-a-b)ZnaCubFecO4,其中0.4≤a≤0.45,0.15≤b≤0.2,1.9≤c≤1.96的配比计算各原材料的重量,制备混合金属硝酸盐溶液;2)将摩尔浓度为1~10mol/L的NaOH溶液加入所述混合金属硝酸盐溶液中,产生沉淀物;3)水热合成反应;4)取出沉淀物进行冲洗、干燥;5)掺入重量百分比为0.05~0.5wt%的Bi2O3以及0.05~0.2wt%的MoO3,经过球磨、烘干后,加入粘结剂进行造粒;6)压制及烧结。本发明制备得到的纳米铁氧体材料,具有高磁导率、高饱和磁感应强度、晶粒结构均匀细小的特点。
1181
0
本发明公开了一种可以在明火上烧的耐热陶瓷食用器皿及其生产方法。所述耐热陶瓷食用器皿的坯体包括高岭土、锂辉石、锂瓷石、无碳硅晶须、膨润土、熟滑石和粘土。所述生产方法包括以下步骤:采用机械低速球磨的办法分散无碳硅晶须,以水为球磨介质,球磨过程采用转速为250r/min,按重量比料∶球∶水=1∶2∶1.2,球磨时间为3-4小时,球磨结束后干燥为干料;还包括以下步骤:配料、加水球磨、过筛、除铁、压滤、练泥、成型、烘干、素烧、施釉和烧成。本发明产品具有极高的耐热性能和机械强度,热稳定性达到800℃-20℃水中热交换一次不炸裂。
中冶有色为您提供最新的广东有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日
2026年01月23日 ~ 24日