845
0
一种用于高能量密度锂离子电池的化成方法,其包括以下步骤:S1:对电池注液后在注液孔处加封口棉,静置16~48h;S2:以0.01~0.02C的倍率将电池充电至3.7~4.0V;S3:以0.03~0.05C的倍率将电池充电至4.0~4.35V;S4:以0.1~0.2C的倍率将电池充电至4.35~4.5V,然后以4.35~4.5V恒压充电1~3h;S5:将电池进行高温老化,老化后将电池进行排气处理,然后根据其重量变化进行二次注液以补充化成及老化过程损失的电解液;S6:电池封口。本发明提供的化成方法可以提高富锂正极-碳类负极体系电池的首次效率、安全性能和循环性能,避免化成过程中的胀气问题,且可以降低电池的内阻。
746
0
本发明公开了一种锂离子电池高压电解液,其包含以下成分:锂盐、有机溶剂和添加剂。所述有机溶剂为链状碳酸酯和环状碳酸酯的混合物;添加剂由双乙二酸硼酸锂(LiBOB)与腈类溶剂组成。本发明在采用腈类化合物作功能性添加剂的基础上再添加适量的LiBOB:一方面LiBOB作为成膜添加剂,减少电解液与电极之间的副反应;另一方面LiBOB的添加可以改善腈类溶剂与负极的相容性。本发明所述的电解液有较高的电导率和较低的粘度,且使用该电解液的锂离子电池循环性能较好。
941
0
本发明涉及锂离子电源技术领域,尤其涉及一种矿用锂离子电源散热装置,包括箱体、凹板、滑动槽、连接槽、电源本体、散热板、轴承一、螺纹杆、矩形块和转动柄,所述箱体内壁表面固定连接有凹板,且凹板的底部表面左右两端均开设有开口向下的滑动槽,所述凹板的底部表面中间位置开设有开口向下的连接槽,且凹板的顶部表面设有电源本体。本发明中,通过螺纹杆和转动柄,解决了现有的锂离子电源在使用时,散热板与锂离子电源接触面积较小,散热效果较差,影响实际使用效果问题,通过转动转动柄,转动柄带动螺纹杆转动,螺纹杆推动轴承一滑动,轴承一推动散热板滑动,从而使散热板与电源本体表面贴合,提高了散热效果。
1143
0
本发明属于锂电池模组虚焊检测技术领域,具体涉及一种基于动态弯曲距离的锂电池虚焊检测方法,包括:获取锂电池模组每一个单体电芯的充放电不同阶段的电压值,生成对应的所述单体电芯的电压序列;依据每一个所述单体电芯的电压序列计算所述单体电芯平均电压序列;计算每一个所述单体电芯的电压序列与所述单体电芯平均电压序列的动态弯曲距离;将每一个所述动态弯曲距离与预设阈值进行比较:当所述动态弯曲距离超过所述预设阈值时,所述动态弯曲距离所对应的单体电芯为虚焊电芯。本发明所提供的一种基于动态弯曲距离的锂电池虚焊检测方法,可以有效检验电池模组是否存在虚焊,而且该检测对电池模组无损伤,易于实现,利于大规模推广。
696
0
本发明涉及锂电池技术领域,尤其涉及一种可共享式新能源锂电池,属于锂电池领域。一种可共享式新能源锂电池,包括壳体,所述壳体内设有固定板,所述固定板底端与壳体内部底端之间形成水箱,所述固定板上固定连接有电池设备,所述壳体内设有冷却管道,所述冷却管道呈螺旋状设置在壳体的内侧壁上,所述冷却管道靠近固定板的一端设有水管,所述水管贯穿固定板连通水箱和冷却管道,冷却管道内设有运水装置;本发明通过通过冷却管道以及运水装置的设置,在实现对电池组件进行减震、保护,延长使用寿命的同时,也能够实现电池工作时对电池本身的降温散热。
1233
0
本发明公开了一种正极材料原位补锂方法及其产品和应用,该正极材料原位补锂方法包括以下步骤:将锂源和水合肼溶于溶剂中形成混合溶液;向混合溶液中加入基体正极材料,混合均匀后形成悬浊液,然后静置处理;对静置处理后所得的物料进行过滤,对过滤所得的固体物料依次进行洗涤、干燥后得到目标产品。本发明利用水合肼的强还原性,将基体正极材料表面的Ni3+还原成Ni2+,并在正极材料表面中嵌插锂离子,Ni2+化学势能低于Ni3+,材料表面结构得到稳定。此外,本发明提供的方法还能够在材料表面形成LiAlO2包覆层,对正极材料具有一定的保护作用,提高材料的循环性能和倍率性能。
851
0
本发明提供一种锂电池规格筛选装置,包括:四个底座,所述四个所述底座的顶部均固定连接有弹簧,四个所述弹簧的顶端共同固定连接有工作台,所述工作台顶部两侧靠近边缘处均固定连接有支撑座。本发明通过把需要筛选的锂电池放入到筛选筒中,通过两个第二液压缸、第二支撑板滑动到指定的锂电池对应规格的宽度,通过设置第一电机、螺杆、滑块、第一液压缸和毛刷左右移动,通过设置两个第三液压缸、两个固定架和横梁,两个第三液压缸前后移动,从而带动毛刷前后移动,这样可以让毛刷前后左右移动把锂电池通过第一通孔和第二通孔漏下。
1086
0
本发明公开一种真空蒸铝分离废旧锂电池正极材料与集流体的方法,涉及废旧锂电池回收技术领域,包括以下步骤:(1)将废旧锂离子电池放电后拆解,取出正极片烘干;(2)将烘干后的正极片粉碎,在真空煅烧炉顶部放置铝板,铝板上方设置循环冷凝水,用以对铝板进行降温;(3)将粉碎后的正极片粉末铺在真空煅烧炉底部,调整粉末平铺厚度≤2mm;(4)调整真空煅烧炉的压力和煅烧温度;(5)真空煅烧3h后,将真空煅烧炉的温度降至常温,除去真空,存留在炉底的即为正极材料,集流体凝华在炉顶的铝板上。本发明的有益效果在于:回收后的高纯正极材料可通过处理恢复活性,继续作为锂电池生产的原料;回收的铝板可作为高纯铝材使用。
1166
0
本发明公开了一种锂电池阳极材料水性聚酰亚胺粘接剂及其制备方法,包括:(1)惰性气氛下,向反应釜中加入反应物,升温至固体完全溶解;(2)加入催化剂,升温反应至无二氧化碳放出;冷却,称量后兑入溶剂;(3)过滤得滤液;(4)称取步骤(3)得到的溶液,向其中滴加十二烷基苯磺酸锂溶液,搅拌混合;(5)将步骤(4)得到的混合液升温至65‑85℃,滴加去离子水;(6)称取步骤(5)得到的混合液,加入去离子水;(7)称取步骤(6)得到的溶液、磷酸亚铁锂和石墨烯,将磷酸亚铁锂、石墨烯依次加入溶液中,混合均匀后,加入去离子水调整粘度,本发明的优点在于,降低粘接剂对阳极材料电容量的影响,同时减少有机溶剂的使用量,降低污染。
745
0
本发明公开了一种基于自适应模糊卡尔曼滤波的锂电池SOC估计方法,对于不同的锂电池,确定卡尔曼滤波离散状态空间模型后,利用自适应模糊卡尔曼滤波的方法估计SOC,其中以锂电池等效模型中的端电压的残差方差匹配度和残差均值作为模糊控制系统的输入,得到系统噪声方差和量测噪声方差的调整系数,从而对这两个方差经行调整。再把调整后的系统噪声方差和量测噪声方差代入到卡尔曼滤波算法中预估各时刻的SOC值。本发明可以精确的对动力锂电池荷点状态SOC经行估计,能解决现有估计方法存在的不能满足在线估计,累计误差大,发散,易受噪声影响等问题,估计精度高。
919
0
本发明涉及一种车载锂电池智能充电方法及装置,能够对车载锂电池实现智能化充电。技术方案:交流电经滤波器滤波、经PFC电路转换成直流电后进入DC/DC转换器,其特征在于:DC/DC转换器输出电路的电压、电流信号反馈到单片机,单片机根据该信号对DC/DC转换器进行控制,使DC/DC转换器将PFC电路输出的直流电转换成适合充电的直流电输出给电池充电。
922
0
本发明公开一种氟化硫酸铁锂正极材料的亚临界连续合成法,涉及锂离子电池正极材料技术领域,本发明包括以下步骤:选择钢厂酸洗废液作为原材料,利用亚临界水的强溶解性和离子迁移能力,在高压下将高温的钢厂废水与高温的锂源、硫酸盐、氟盐溶液混合,一步合成纳米化LiFeSO4F正极材料。本发明的有益效果在于:本发明所得材料物相纯、结晶性良好、成本低廉,且工艺简单、调控方便,易于大规模连续化工业生产。
1045
0
本发明提供了一种铁镍双金属硒化物纳米材料、其制备方法及锂离子电池。本发明提供的铁镍双金属硒化物纳米材料的制备方法包括:将乙酰丙酮铁、乙酰丙酮镍和二苄基二硒醚在溶剂中进行加热反应,形成Fe2NiSe4纳米材料。本发明采用特定的前驱源‑‑乙酰丙酮铁、乙酰丙酮镍和二苄基二硒醚,在溶剂体系中进行反应,可直接一步合成Fe2NiSe4纳米材料,大大简化操作,而且能够有效提高Fe2NiSe4纳米材料的结晶性和纯度。将本发明制得的Fe2NiSe4纳米材料用作锂离子电池的负极材料,能够提高电池的储锂比容量、倍率性能及循环性能。
726
0
本发明涉及锂离子电池技术领域,公开了一种废锂离子电池电解液的回收处理方法,收集废锂离子电池电解液后采用TiO2离子筛‑多孔CaO复合材料进行搅拌吸附,然后过滤,将得到的滤渣利用盐酸溶液浸出得到含锂溶液,对锂离子进行回收;滤液进行减压蒸馏,对电解液中的有机溶剂回收。本发明的方法回收的有机溶剂纯度高,用于再制造锂离子电池时对电池的循环使用性能不产生不利影响,而且工艺简单,容易操作,产生的废料性质稳定,不易流失到环境中,对环境的威胁小。
817
0
本发明公开了一种用于抑制钛酸锂电池胀气的化成老化方法,用于解决钛酸锂电池在使用过程中产生的胀气问题;包括前静置、化成和老化三个步骤,化成步骤中将前静置后的钛酸锂电池采用先大电流后小电流恒流充电的方式,将电池充电至高于工作电压平台的截止电压,静置后放电至半电态电压。发明基于钛酸锂电池产气机理;化成过程中采用先大电流,后小电流充电的方式,促使钛酸锂材料在高电位下,强制形成SEI膜;并将电池在化成静置结束后放电至半电态,置于低温环境促使化成过程形成的SEI膜进一步生长、致密。通过在负极钛酸锂材料表面形成致密的SEI膜,阻止电解液在负极位置发生的化学反应;达到抑制产气降低膨胀的目的。
704
0
本发明提供一种锂基膨润土,所述膨润土制备工艺为:将膨润土矿中开采的膨润土原料进行筛选提纯去除杂质,得到膨润土原材加水,形成膨润土膏浆。往膨润土膏浆内加入酸化剂进行酸化。将酸化的膨润土膏浆进行水洗、过滤,直至洗液呈中性停止。向膨润土膏体内加入锂化剂,并进行加热搅拌。将膨润土膏浆进行干燥、磨粉。向膨润土内加入锂化剂,并进行加热搅拌。将加热搅拌均匀的膨润土进行陈化、过滤。将过滤后的膨润土进行干燥,磨粉,包装。本发明通过添加酸化剂对膨润土进行酸化增加活性,并且添加两次锂化剂加热搅拌进行改型,干法和湿法相结合,提高了膨润土的锂化效果和锂化效率,工艺简单。
1086
0
本发明公开了一种磷酸亚铁锂正极材料极片的制备方法,包括如下步骤:(1)以碳酸锂、草酸亚铁和磷酸二氢铵为原料并混合均匀,获取原料混合物;(2)通过高温预烧和研磨法将上述原料混合物制成预烧后的原料混合粉末,并将其压制成坯体,再通过高温烧结和退火技术制备得到磷酸亚铁锂靶材;(3)采用真空磁控溅射镀膜技术,将制备的磷酸亚铁锂靶材和导电剂靶材通过调控真空磁控溅射镀膜工艺参数,直接制备得到磷酸亚铁锂电极极片。本发明的优点在于:提供了一种结构简单、制作方便、具有较高的体积比能量和良好的电化学性能的磷酸亚铁锂正极材料极片的制备方法。
1150
0
本发明提供一种尖晶石镍锰酸锂的制备方法,涉及电池正极材料制备技术领域,制备方法包括以下步骤:(1)配制锰盐、镍盐和M盐的混合金属盐溶液,配制碳酸氢铵溶液;(2)将稳定剂浸泡于混合金属盐溶液中制得混合溶液;(3)以油包水表面活性剂‑油相‑H2O为微乳液反应体系,将步骤(2)中的混合溶液倒入油相中,搅拌形成稳定的乳状液;(4)然后,将乳状液滴入NH4HCO3水溶液,进行共沉淀反应,沉淀反应完成后将所得料用乙醇和水交替清洗数次,得到镍锰碳酸盐前驱体;(5)将所得镍锰碳酸盐前驱体与锂源混合均匀后,烧结得到所需镍锰酸锂正极材料。本发明具有制备工艺简单、产品压实密度高、产品电化学性能优异、循环性好且产业化前景大等优点。
本发明涉及复合材料领域,具体而言,提供了一种以锂长石和蓝晶石为组元的陶瓷增强铁基复合材料及其制备方法、机械零件。所述以锂长石和蓝晶石为组元的陶瓷增强铁基复合材料主要由以下各原料制备而成:锂长石、SiC、蓝晶石、矾土、莫来石、钛白粉、CaO、以及Fe。该复合材料具有耐磨性能好和强度高的优点,材料的屈服强度为470~960MPa、抗拉强度为750~1400MPa、延伸率为18~25%、断面收缩率为25~35%、硬度为25~65HRC、冲击功为50~150J。
1067
0
本发明提供了一种退役锂离子电池容量恢复的方法,包括:1)对退役锂离子电池单体按生产批次和使用工况分类;2)筛选无胀气、无破损且电压≥2.0V的电池单体;3)筛选出剩余容量≥50%的电池单体;4)拆解电压和容量符合要求的同一批中的一只电池,用XRD检测其正极材料的晶体结构;5)向正极材料晶体结构无明显变化的电池批次中的电池单体注入浸润液并静置;6)向静置完成的电池单体中注入电解液并再次静置;7)对电池单体进行一次充放电,以此放电容量作为电池单体容量恢复后的标称容量。通过补充浸润液和电解液,可有效提高电解液对电极浸润性,补充了活性锂离子,实现对电极材料晶体结构未发生明显变化的电池的修复和再生。
968
0
本发明涉及一种盐湖提锂用纳滤膜的生产工艺,属于高分子膜技术领域,包括以下步骤:将聚合物溶于溶剂中得到铸膜液,将铸膜液在60℃下搅拌后静置脱泡,冷却至室温涂覆在无纺布上,然后浸入25℃去离子水中,1h后取出,用去离子水清洗得到基膜;将基膜固定在聚丙烯框中,用橡胶辊除去基膜表面残留的水分得到膜框,将膜框浸渍于水相溶液中15‑25s后取出,在空气中停留250‑300s后浸渍于有机相溶液中,交联反应1‑2h后取出,自然晾干,得到盐湖提锂用纳滤膜;首先利用聚合物制备基膜,然后以胺基水相溶液和酰氯基有机相溶液在基膜表面发生交联反应得到纳滤膜,不仅具有较高的镁锂离子分离性能,还具有抗菌耐污染特性。
1127
0
本发明提供了一种具有灭火功能的锂离子电池储能集成箱,属于储能集成箱技术领域,用于解决锂离子电池储能集成箱灭火效果差的问题。包括箱体和防火盒,箱体的内部固定有若干支撑机构,支撑机构的侧面设置有冷却机构,支撑机构包括若干支撑板,防火盒固定在对应位置的支撑板上,防火盒的两端均设置有密闭机构,防火盒的一侧铰接有密封门,防火盒的上方固定储气盒,储气盒的两端分别固定有蓄电池和控制箱,储气盒的内部固定有温度传感器,储气盒的下方通过连接管连接有导向管,导向管上螺纹连接有若干密封接头;本发明通过防火盒和密闭机构配合,可以对起火的元器件进行密闭、切断电源以及喷淋灭火气体,提高了锂离子电池储能集成箱的灭火效果。
933
0
一种锂硫电池正极制备方法及利用其组装软包电池的方法,属于新能源材料与器件技术领域,将S/C复合正极材料、导电剂Super‑P Li和水性粘接剂LA133在去离子水中均匀混合后涂布在正极集流体的两侧,干燥、辊压后制得正极;采用铜锂复合带作为负极;将裁剪后的正极极片、负极极片和聚丙烯隔膜进行叠片组装,焊接极耳后得到电池电芯,将电芯放入铝塑复合膜外壳中,注液、封装、老化得锂硫软包电池。本发明采用水系溶剂体系制备的电池正极极片具有较高的活性硫负载量,组装的软包电池表现出较高的容量和能量密度。利用水系溶剂体系制备正极的方法环境友好,安全无毒,有利于规模化量产。
本发明公开了一种纺锤状Ag/Co3O4复合材料及其制备方法和在锂空气电池中的应用,涉及锂空气电池技术领域,步骤如下:将Co‑MOF‑74材料煅烧,得到纺锤状的Co3O4;然后将Co3O4分散到去离子水和乙醇的混合液中,加入Ag(NO3)2,搅拌,然后转移至反应釜中进行水热反应,离心,洗涤,干燥,煅烧,即得。本发明以Co‑MOF‑74材料为基底制备了纺锤状Co3O4,纺锤状的形貌有利于离子与溶液液体的反应,增加导电性,使材料有更好的催化性能;并将单质Ag修饰到纺锤状Co3O4基体上,调节其界面工程,提高电子电导率,提供了更多的催化活性位点,将其作为锂空气电池正极催化剂时具有优异的催化性能,其首次放电比容量为13945mAh/g,在500mA/g电流密度下可以循环195圈,过电压维持在1.207V左右,性能优异。
870
0
本发明提供了一种锂金属电池用液态电解质,其包括锂盐、溶剂和添加剂,其中,所述溶剂包括醚类化合物。本申请提供的液态电解质中由于加入了醚类化合物,使得到的液态电解质与锂金属电池有很好的相容性,能够确保电池具有优异的长循环性能。
911
0
本发明涉及锂电池隔膜技术领域,具体为一种玻璃纤维的锂电池隔膜,包括卷筒、膜片及寻头机构,所述膜片包裹于卷筒的外表面,所述寻头机构套接于膜片的外表面上端位置;所述寻头机构包括环轨、连接架、定头座、底座、顶盖、抚平机构及弯钩,所述环轨固定安装于卷筒的内表面前后两端,所述连接架活动安装于膜片的前后两端外表面上端中间位置,所述定头座固定安装于两个连接架之间上端位置,所述底座固定安装于定头座的下端,所述顶盖活动安装于定头座的内部上端,所述抚平机构活动安装于定头座的一侧,该玻璃纤维的锂电池隔膜在使用时方便快速寻找膜头,贴膜时更加平整,便于使用结束后割断膜带,隔膜自身整洁降低了杂质对电池的影响。
955
0
本发明提出了一种多卷芯锂离子电池,包括壳体以及设置在壳体内的极芯组,极芯组包括N个呈圆柱状的卷芯,N为正整数且N≥2。本发明提出的多卷芯锂离子电池内的极芯组,若采用多卷芯并联方式连接可减小电池内阻,提高倍率性能,若采用串联方式连接,可以提高电池的电压和容量。本发明还提出一种电池包,包括外壳以及设置在外壳内的电池阵列,电池阵列包括多排电池组,每排电池组由上述的多卷芯锂离子电池通过侧面排列耦合组成。电池单体之间相互支撑可对彼此起到固定和保护作用,而电池单体的壳体包胶采用磨砂质地绝缘材料,可使相邻壳体在垂直底盘方向上产生摩擦力,避免电池单体发生相互错位破坏电池阵列,起到稳固作用。
1014
0
本发明涉及一种大容量锂离子电池动力系统智能降温装置,旨在解决现有的锂离子电池动力系统智能降温设备由于降温装置结构简单,无法达到高效降温的问题,包括电机,电机上设置有转轴,且转轴的另一端固定设置有主螺旋桨,转轴上固定套设有缺齿轮,且缺齿轮与环形齿轮内的两组平行齿牙交替啮合;本发明中,通过增加了温度感应器和降温组件的组合结构,温度感应器的设置,可以有效对锂离子电池动力系统中的温度进行实时监测,在监测到温度超过正常范围时,则连通电路控制降温组件工作,从而达到降温作用,本发明中结构设计合理,不但可以达到智能控制降温过程的效果,而且可以达到高效降温的效果,因此在实际应用中具有很高的实用价值。
1139
0
本发明公开了一种锂离子电池用PP/PE/PP三层共挤隔膜的加工工艺,涉及锂电池隔膜技术领域,包括如下工艺步骤:(1)原料筛选,(2)熔融挤出,(3)流延共挤,(4)热处理,(5)拉伸成孔;本发明通过原料的筛选使所制PP/PE/PP三层共挤隔膜的使用性能得到显著改善,在满足隔膜常规使用性能要求的同时有效提高锂离子电池的使用安全性;并通过热处理时所述热处理剂的配合使用能够强化热处理效果,取得有效改善所制隔膜使用性能的技术效果。
1095
0
本发明公开了一种锂离子电池水系涂胶隔膜的制备方法,包括如下步骤:S1、将分散剂于粉末水溶液中分散得到水系分散液;S2、将水系分散液与粘结剂混合得到液相混合物;S3、将液相混合物旋转喷涂在基膜上,干燥,得到锂离子电池水系涂胶隔膜。本发明提出的一种锂离子电池水系涂胶隔膜的制备方法,制得的涂覆膜透气值增加较小,制得的卷芯在热压后有一定的硬度,便于机械手抓取,提高了生产效率,同时对电池的倍率性能、循环性能、体积能量密度都有较大提高。
中冶有色为您提供最新的安徽有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日