957
0
本发明涉及一种纤维-金属混杂复合材料零件叠层成型工艺方法,它包含下列步骤:铝合金板的裁剪、铝合金及夹层材料的铺覆、冲压模具润滑、叠层材料的加热及冲压预成型、剥离冲压叠层铝合金零件及纤维-金属混杂复合材料零件热压成型。本发明所设计的成型工艺方法用于成型具有曲率结构的纤维-金属混杂复合材料零件,与现有技术相比,该方法解决了金属层及纤维预浸料层在含曲率结构零件中逐步过渡时难以铺贴到位的问题,克服了金属传统的钣金成型配合精度低的缺陷,提高了铺贴层在R区等大曲率位置的尺寸匹配性,避免了“架桥”及“塌陷”两种缺陷的产生,提高了纤维-金属混杂复合材料零件大曲率结构件的成品率。
1111
0
本发明涉及一种提高发动机热端构件用陶瓷基复合材料力学性能的纤维排布方式,所述发动机热端构件用陶瓷基复合材料包括:多个在空间中重复排列的纤维结构单元;所述纤维结构单元包括:从上至下共4层,共10条纤维;其中,上2层共5条纤维,呈正三角排列;中间2层共6条纤维,呈四方排列;下2层共5条纤维,呈倒三角排列。采用本发明提供的提高发动机热端构件用陶瓷基复合材料力学性能的纤维排布方式,可以在一定程度上增大陶瓷基复合材料的横向力学性能,避免因复合材料的横向力学性能过低而导致的复合材料在纵向失效未达到指标前,复合材料横向的变形甚至开裂,从而综合改善陶瓷基复合材料的力学性能。
971
0
本发明公开了一种高强耐久复合材料及其制造方法与应用,目的是提供一种高强耐久复合材料及其制造方法,同时提供一种由该高强耐久复合材料为主要材料制成的高强耐久材料杆状构件及其制造方法。本发明所提供的高强耐久复合材料,基本上由以下原料配比组成:结合剂,30-60%;水,3-15%;骨料,30-60%;纤维,0-15%;添加剂,0-5%。本发明提供的高强度耐久复合材料克服了现有技术的缺点和不足,各项性能(包括耐久性)都比混凝土好;和钢材相比,本发明的复合材料虽然抗拉强度较低,但抗压强度相当,而且具有优越的耐久性和耐火度;和钢材相比,本发明的复合材料还具有轻质的优点。
814
0
一种双面斜纹立体玻璃纤维织物及制备复合材料的方法,玻璃纤维织物具有2/6双面斜纹仿立体结构,其面密度为600±30g/m2,厚度为0.70±0.05mm,具有优异的柔韧性、表面平整性以及力学性能,特别适合作为树脂基复合材料中的增强材料使用;复合材料制备首先,将树脂溶液,通过溶液法浸胶机连续浸渍到本发明的织物里制成预浸料;然后,将预浸料根据设计要求分别制造成具有层压结构的复合材料或是具有夹层结构包括蜂窝夹层以及泡沫夹层结构的复合材料,制备出的复合材料的各项力学性能表现优异,尤其是复合材料中固化后预浸料的单层厚度达到0.55~0.60mm,显著高于同等单位重量下的缎纹、平纹、斜纹等类型的玻璃纤维织物预浸料的厚度,因此,可以广泛在高铁、船舶等舱内装饰方面进行推广应用。
1015
0
本发明是一种有序微结构树脂基复合材料膜制备装置。由张力控制系统(1)、复合材料涂膜系统(2)、磁场处理系统(3)、加热处理系统(4)、调速直流伺服电动机(5)和底座(6)等部分组成,各系统依次顺序固定在底座(6)上本装置通过调速直流伺服电机(5)带动底膜(7)运动,首先经过复合材料涂膜系统(2),将预先配制好的树脂基复合材料液体或熔体涂于底膜上,然后经过磁场处理系统(3),使复合材料中的微结构有序化,并在磁场处理过程中加热使复合材料预固化,最后经过加热处理系统,使复合材料完全固化,最终形成有序化微结构树脂基复合材料。本装置用于连续制备磁响应微结构有序化的树脂基复合材料膜。其中,有序化包括垂直于膜平面的阵列有序化和平行于膜平面的取向(膜的纵向和膜的横向)排列的有序化;微结构包括树脂大分子中的官能团或链段、结晶结构、添加微粒子等。与现有的有序化微结构树脂基复合材料膜制备方法相比,本装置的特点是既可制备微结构垂直于膜平面的阵列有序化复合材料膜,也可制备微结构平行于膜平面的取向有序化复合材料膜;既可间歇制备,又可连续制备,并且操作简单,膜成型方便。
本发明公开了一种具有优异的吸波及电磁屏蔽性能的复合材料及其制备方法,属于纳米复合材料及其制备技术领域。所述的复合材料包括rGO@MoS2粒子和PVDF,所述的rGO@MoS2粒子在复合材料中的质量分数为2.5~30wt%。当所述的质量分数为5wt%时,所述的复合材料具有吸波性能;当所述的质量分数为25wt%时,所述的复合材料具有屏蔽性能。本发明提供的复合材料制备工艺简单,二硫化钼纳米球稳定,且与氧化石墨烯复合的成功率很高,有望大量生产;本发明提供的复合材料同时具有优异的吸波及电磁屏蔽性能。
948
0
本发明涉及一种木塑复合材料及其制造方法。该木塑复合材料,是将包括下述重量份数的原料进行混合、共聚反应,并在螺杆挤出机中反应挤出制成的,木粉或植物纤维100、高熔融指数聚烯烃10-30、常规聚烯烃30-50、马来酸酐0.1-1、过氧化物0.015-0.15,其中,高熔融指数MI为20~50。利用塑料接枝技术,塑料合金技术及共混材料互穿网络结构概念,制造出适合建筑模板使用的木塑复合材料,利用该制造技术制备木塑复合材料,可以用不同品种,不同牌号的混杂回收塑料作基材,降低了木塑复合材料对塑料原料较严格的要求,同时,使本木塑复合材料的机械性能得以提高。该方法的特别之处在于将不利于加工制造木塑复合材料的不利因素通过有效加工技术和方法,变为有利于木塑复合材料机械性能的因素。
753
0
一种多巴胺改性碳纳米管/橡胶复合材料及其制备方法,属于橡胶纳米复合材料技术领域。表面由多巴胺修饰的碳纳米管均匀地分散在橡胶材料中。制备方法:将原始碳纳米管分散去离子水中,使pH值稳定在5~8之间;再加入多巴胺室温沉积聚合,得到表面由多巴胺修饰的碳纳米管;将改性的碳纳米管加入到去离子水中形成碳纳米管-去离子水悬浮液;将所得悬液液滴加到胶乳中,不断地机械搅拌,得到碳纳米管-胶乳混合液,并滴加到破乳剂中,进行絮凝,破碎干燥,得到“母胶”状态的碳纳米管/橡胶复合材料;采用传统的机械共混法,将助剂加入到“母胶”中。复合材料的拉伸强度、定伸应力、导热性都能得到相应的提高。
696
0
本发明一种含碳纤维和液晶聚合物的复合材料是含有热致液晶聚合物(TLCP)和碳纤维混杂增强聚醚砜复合材料,其热致液晶聚合物为主链型对羟基苯甲酸与对苯二甲酸乙二酯的共聚酯或对羟基苯甲酸、氯代对苯二酚、间苯二酚与对苯二甲酸的无规共聚酯,由于TLCP具有很强的切力变稀的流变特性,从而降低了复合材料加工时熔体粘度和提高了聚醚砜复合材料的力学材料。
795
0
一种镧铁硅基室温磁制冷复合材料,其为由镧铁硅基化合物与高分子材料及助剂均匀混合,之后经模压和加热成型的复合材料;镧铁硅基化合物与高分子材料及助剂的重量份配比为10~500∶10∶0.1~1;其制备方法:将镧铁硅基粉末、高分子材料和助剂按上述比例均匀混合;之后装入磨具,用模压机冷压成型;再升温熔融粘结固化成型;其优点在于:在原有制备LaFeSi基化合物的基础上,解决了LaFeSi基磁制冷材料硬度大、脆性大、难于加工成型等问题;该室温磁制冷复合材料可与换热流体隔绝,防止磁制冷工质在使用过程中的氧化;利用模压成型的方法将复合材料一次压制成型,便于组装后形成高比表面积和低阻流通道磁制冷部件。
994
0
本发明提供了一种环氧复合材料及其制备方法,该环氧复合材料的原料包括环氧树脂基料,无机填料,固化剂和纤维织物;所述无机填料由两种不同粒径的填料组成,两种填料的平均粒径的比值为1:0.37‑0.45,其中,大粒径的填料的平均粒径不小于10μm;以填料的体积计,所述两种填料中,大粒径填料与小粒径填料的用量比为
一种折射率可调的颗粒状ZnO/SiO2发光复合材料,其由SiO2和均匀分散于SiO2的ZnO量子点组成;ZnO量子点含量为ZnO/SiO2发光复合材料的1-90wt%。其制备如下:先制备无色透明的含ZnO量子点颗粒的乙醇溶液;再将正硅酸乙酯在搅拌情况下加至含ZnO量子点颗粒的乙醇溶液中,磁力搅拌3~8小时;然后加入氨水,在磁力搅拌条件下反应16-28小时,再用乙醇进行离心清洗得到白色沉淀;将白色沉淀在空气中进行干燥,再在300~600℃煅烧0.5~2小时,得到颗粒状ZnO/SiO2发光复合材料;该颗粒状ZnO/SiO2发光复合材料在可见光区的发光,且折射率1.47-1.95之间可调。
776
0
本发明涉及聚合物复合材料嵌入式微电容及其制备方法,属于微电子新材料与器件技术领域。该微电容包括依次层叠的上电极,介电薄膜和下电极,该介电薄膜采用聚酰亚胺/钛酸钡(PI/BT)复合材料。该方法包括:使用原位聚合法将BT纳米颗粒分散入PI中制备介电薄膜PI/BT复合材料;采用流延法将PI/BT复合材料黏附在基底铜板上,在得到的介电薄膜上铺一层光刻胶,并根据版图进行紫外线曝光,得到图形化的光刻胶;介电薄膜和光刻胶上溅射一层金属层;在丙酮溶液中浸泡形成了图形化好的上层电极;在氧气和三氟甲烷的混合气体中进行RIE处理后,超声清洗,即制得微电容。本发明可获得面积较大的、均匀致密的介电薄膜,并且可以使微电容在较高温度和低温下稳定工作。
1209
0
本发明涉及一种镁基复合材料的制备方法,包括以下步骤:提供大量镁基金属粉体和大量纳米级增强体;将镁基金属粉体与纳米级增强体混合;以及将混合后的粉体高速压制,形成镁基复合材料。本发明还涉及一种制备镁基复合材料的高速压制装置,包括一压制锤头、一模具及一通气设备,所述压制锤头位于模具正上方,所述的高速压制装置进一步包括一密封腔体,通气设备位于密封腔体外部,并与密封腔体连接,压制锤头与模具位于密封腔体中。采用本发明提供的制备装置及方法,提高了所制备工件的致密性,简化了镁基复合材料粉末冶金法的生产步骤,可广泛地应用于3C产品、汽车零部件、航天航空零部件等方面。
1060
0
本发明属于微电子封装领域,提供一种钎焊温度在450~510℃之间,用于连接SiCp/Al复合材料与可伐合金的钎料及其钎焊方法。本发明开发了一种钎焊温度在450~510℃之间的中温钎料,该中温钎料组分的质量百分含量为:Ag:30~50;Cu:5~15;Sn:35~60;Ni:0~3;用该钎料钎焊化学镀Ni后的SiCp/Al复合材料与可伐合金,钎焊后外壳气密性优于1×10-9Pa·m3/S,剪切强度高于65MPa,满足国军标要求。特点在于将SiCp/Al复合材料在高于芯片的装片温度(430℃),而低于SiCp/Al复合材料本身熔点的温度下进行钎焊。这保证了后续的芯片装片工艺能使用Au-Si共晶法(380~430℃),进而保证封装的整体散热效果。SiCp/Al复合材料外壳主要适用于微电子封装中混合集成电路、毫米波/微米波集成电路、多芯片组件和大功率器件的封装外壳。
730
0
本发明提供一种碳包覆氧化镍的纳米复合材料及其制备方法和应用,该纳米复合材料含具有外膜和内核的核膜结构,外膜为石墨化碳膜,内核包含氧化镍纳米颗粒,其中,碳含量占纳米复合材料的含量不大于5wt%。该纳米复合材料作为催化剂具有优异的活性,可有效催化分解一氧化二氮,有助于解决己二酸厂和硝酸厂等生产过程中产生的高浓度N2O的消除问题,对于保护环境、减少大气污染具有重要意义,具有良好的工业应用前景。
1145
0
本发明属于航空制造技术领域,具体涉及一种复合材料成型模具,用于单侧闭角封闭缘条结构复合材料零件的成型。目前复合材料成型模具包括金属模具、复合材料模具、橡胶模具、泡沫模具、石膏模具及可溶聚合物模具等。传统的异性结构复合材料零件的制造可采用橡胶收缩模、泡沫、石膏等零件成型过后可通过破坏模具的方式得到零件,但这些模具仅适用于一次或几次成型,不利于批量生产,而且采用这些模具制造的复合材料零件表面精度、质量等总体上不如金属模具。本发明提供一种设计合理、制造简单的用于单侧闭角封闭缘条结构复合材料零件的成型模具,同时解决了单侧闭角结构复合材料零件的成型及脱模问题。
856
0
本发明涉及一种基于修正梁理论的复合材料I型分层桥联律确定方法,包括以下步骤:(1)开展复合材料层合板I型分层试验,测得其P‑δ曲线;(2)建立I型载荷下试样的二维修正梁力学模型;(3)将P‑δ曲线、材料基本属性、几何尺寸输入上述模型计算程序,在Matlab软件进行迭代计算,确定分层长度a、初始裂尖张开位移δ*以及能量释放率GIc;(4)建立GIc与δ*之间的关系,进而得到桥联律σg(δ*)。本发明适用于任意铺层角度下复合材料层合板I型分层扩展过程中桥联律的确定,其优势包括:(1)本方法律仅要在试样的P‑δ曲线作为输入,不需要对裂纹位置进行观测,减少了试验装置;(2)利用Matlab程序实现,计算成本较低;(3)可以用于确定高温下复合材料层板I型桥联定律。
1194
0
本发明涉及一种热结构复合材料长寿命复合涂层及其制备方法。热结构复合材料长寿命复合涂层的制备方法,包括如下步骤:将热结构复合材料在第一预设温度下,保温第一预设时间进行预氧化后,将热结构复合材料自然冷却至室温;在保护气氛下,将热结构复合材料埋入第一包埋粉料中,在第二预设温度下,保温第二预设时间,得到具有SiC涂层的热结构复合材料;将具有SiC涂层的热结构复合材料埋入第二包埋粉料中,置于保护气氛下,并以预设升温速率将温度升至第三预设温度,保温第三预设时间。根据本发明的一种热结构复合材料长寿命复合涂层的制备方法,长寿命抗氧化性能优异,制备工艺简单,操作方便,原料易得,制备成本较低。
971
0
本发明提供了一种提高RTM成型聚酰亚胺复合材料热氧化稳定性的方法,属于树脂基复合材料领域。该复合材料采用RTM工艺制备,且复合材料树脂基体成分随厚度梯度变化,即复合材料表层基体成分为设计分子量在1500~10000g/mol之间的热固性聚酰亚胺树脂A,芯层基体为最低流变粘度在1Pa·s以下的热固性聚酰亚胺树脂B。本发明所提供的方法在使得复合材料可通过RTM工艺制备的同时,有效提高了复合材料的热氧化稳定性能,从而延长复合材料寿命。本发明可以应用于航空发动机、航空、航天等高技术领域。
991
0
本发明公开一种二氧化硅填充型纳米团簇复合材料,包括二氧化硅和至少两种无机纳米晶,其中一种为具有表面等离子体共振效应的无机纳米晶,另一种为与之具有重叠吸收的无机纳米晶;所述至少两种无机纳米晶组装得到纳米团簇;所述二氧化硅分布于整个纳米团簇中形成纳米团簇复合材料;所述无机纳米晶的粒径为1-100nm;所述纳米团簇复合材料的直径为50-1000nm。该纳米团簇复合材料具有简便易得,尺寸和组成可调的特性,在实际应用中具有重要意义。本发明还公开了制备该二氧化硅填充型纳米团簇复合材料的方法及应用。
730
0
本发明提供了一种钛基复合材料装甲及其制造方法。该钛基复合材料装甲包括上层、中间层和下层,上层和下层均为钛合金层,中间层为钛合金与陶瓷复合材料层,并且中间层具有钛合金空间点阵结构,该空间点阵结构将该钛合金与陶瓷复合材料层划分为多个单元模块。该钛基复合材料装甲的制造方法为:通过CAD软件设计具有空间点阵结构的夹层结构,采用电子束选区熔化技术实现该夹层结构的成型;在成型后的夹层结构中填充钛合金与陶瓷混合物;然后进行热等静压,得到该钛基复合材料装甲。该钛基复合材料装甲具有多层结构,中间层具有钛合金空间点阵结构,进而将钛基复合材料模块化,能够限制单发子弹打击时的破坏范围,提高装甲材料的抗多发打击能力。
1052
0
一种炭基复合材料用低温粘接剂的制备方法,该方法有三大步骤:一、炭基复合材料的表面处理,用刚玉粗砂纸在粘接面上打磨出规则的细槽,再将试样浸入无水乙醇内用超声波清洗机清洗30分钟,最后在80℃的环境下干燥4小时;二、粘接剂的制备;粘接剂由20~30WT.%(质量百分比)的有机硅树脂,40~50WT.%的低熔点填料,30~35WT.%的铝粉和0~0.5WT.%的炭纤维混合而成;三、粘接固化及高温热处理工艺,将粘接好的炭基复合材料放入高真空加热炉内使其在真空环境下260℃固化2小时,在固化期间给材料施加2.5MPA的压力。实践证明:经本发明粘接后的炭基复合材料具有很好的剪切强度、抗老化性能和耐热疲劳性能,它在炭基复合材料领域内具有广泛的实用价值和应用前景。
1000
0
本发明属于高分子/无机纳米复合材料的领域,特别涉及能够形成两相结构的两种聚合物的共混物作为基体,添加无机纳米导热填料制备的导热复合材料及其制备方法。将占导热复合材料总量的质量百分数为40%~88%的聚乙烯和聚乙烯-醋酸乙烯酯,质量百分数为1.5%的润湿剂以及质量百分数为0.5%的抗氧剂在混合机中搅拌混合均匀;然后向上述的混合物中加入占导热复合材料总量的质量百分数为10%~58%的纳米氧化铝,在混合机中搅拌混合均匀;将混合均匀的原料经过螺杆挤出机熔融挤出、冷却、牵引和切粒,得到所述的导热复合材料;其中:聚乙烯和聚乙烯-醋酸乙烯酯的质量比为1∶1。本发明的材料具有低填充、高热导率和良好的力学性能。
973
0
本发明提供了一种胶接固化吸波复合材料及其制备方法,该制备方法包括如下步骤:(1)将已固化的复合材料置于成型模具上,然后铺覆胶粘剂,得到铺覆有胶粘层的复合材料基体;(2)在所述铺覆有胶粘层的复合材料基体上铺覆至少一层吸波胶膜,得到吸波复合材料基体;其中,所述吸波胶膜包含:吸波剂和吸波树脂;(3)在所述吸波复合材料基体上铺覆至少一层用作阻抗匹配层的第一预浸料,得到包含阻抗匹配层的吸波复合材料基体,然后进行固化处理,得到所述胶接固化吸波复合材料。本方案提供的胶接固化吸波复合材料制备方法能够降低复合材料报废率。
1054
0
本发明涉及纳米复合材料领域,具体地说,涉及一种ABS纳米复合材料,ABS纳米复合材料是由混料经熔融共混制得;混料包括ABS,ABS颗粒上结合有纳米材料和液体介质。还涉及一种ABS纳米复合材料的制备方法,包括:(1)将纳米材料、液体介质混合,制得膏状物;(2)将膏状物和ABS混合,使膏状物粘覆在ABS颗粒表面,制得混料;(3)将混料熔融共混,制得纳米复合材料。本发明的混料加入到挤出机等设备中后不会打滑,可直接制备纳米复合材料,无需在制备过程中加入其它物质,便于生产加工,且避免了现有技术中液体介质过早气化导致的纳米复合材料性能较差的问题,经实验发现,相比于现有技术,本发明的混料制得的纳米复合材料性能更加优越。
1384
0
本发明涉及一种复合材料叠层弯曲振动元件及其制备方法。该复合材料叠层弯曲振动元件包含叠堆的厚度相同的至少两层压电复合材料。压电复合材料的叠层形式可以是双叠片、多叠片及带金属板的叠片形式等。压电复合材料为压电陶瓷复合材料或压电单晶复合材料。该制备方法包括:设计并制备相应尺寸的压电复合材料;将尺寸相同的压电复合材料按照电路并联方式进行粘接,制成复合材料叠片压电振子。粘接时,施加外力对复合材料进行挤压,以使其粘接紧密。本发明弥补了现有低频换能器振动位移较小的缺陷,最终能够实现换能器发射电压响应的提高。
935
0
本发明提供了一种改性的C/C复合材料及其制备方法,制法包括:对炭纤维预制体进行界面改性,得到界面改性的C/C复合材料,改善复合材料中炭纤维与基体界面的结合性能以及保护炭纤维,从而提高C/C复合材料的高温抗氧化性能;进一步对界面改性的C/C复合材料进行基体改性,得到改性的C/C复合材料骨架,大大提高C/C复合材料基体碳的高温抗氧化与耐冲刷性能;并且,采用高温真空压力浸渗法将铜浸入改性的C/C复合材料骨架中,得到改性的C/C复合材料,利用铜的自发汗冷却和热冗作用,降低C/C复合材料烧蚀时的热量聚积程度和温升速度,从而提高C/C复合材料的耐烧蚀性能。
本发明涉及一种碳化钛MXene官能化石墨烯纳米复合材料薄膜制备方法及应用。然而制备高强度和高电导率的石墨烯纳米复合材料薄膜一直以来是一个挑战。为了解决这个问题,采用亲水性和高导电性MXene纳米片,利用Ti‑O‑C共价键去官能化氧化石墨烯,再通过有机分子进行化学交联,制备出超韧性MXene官能化石墨烯纳米复合材料薄膜。引入的MXene纳米片和有机分子不仅减少石墨烯薄膜的孔隙率,也提升了石墨烯纳米片的取向度。因此,由于界面协同作用,制备出石墨烯纳米复合材料薄膜呈现超高韧性42.7MJ m‑3以及高电导率1329.0S cm‑1。并且基于此种超韧性和高导电MXene官能化石墨烯纳米复合材料薄膜,组装成柔性超级电容器表现出高体积能量密度和极好的柔性。
1126
0
本发明提供一种复合材料部件与金属部件的连接结构及连接方法、复合材料主体与金属转动体的连接结构、船舶局部上层建筑复合材料与金属窗或金属门的连接结构。连接结构包括:金属部件,中部设有燕尾槽,燕尾槽的宽口侧与窄口侧分别贯穿金属部件底面与顶面;复合材料部件,设有燕尾状凸起,与燕尾槽榫接;复合材料部件包括:复合材料主体板,设于燕尾槽的窄口侧;复合材料连接板,设于燕尾槽中;外表面与燕尾槽内表面贴合;两端从燕尾槽的窄口侧延伸出,并与复合材料主体板层叠、一体成型;复合材料嵌件,填充于复合材料连接板所形成的间隙中。本发明的连接结构及连接方法,实现了复合材料与金属结构之间的高强度、高稳定性、高可靠性连接。
中冶有色为您提供最新的北京有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!