1081
0
本发明公开一种基于回收太阳电池制备锂离子电池负极的方法,其包括:(1)机械移除废旧太阳电池铝框和接线盒得到硅太阳电池组件,再通过高温加热除去组件的EVA粘结层和背板有机物,剥离面层钢化玻璃,得到硅片;(2)将硅片浸泡于硫酸中去除铝背电极和硅片表面的锡、铅;(3)用清水清洗步骤(2)得到的硅片并将其机械破碎,通过磨矿制得粒度小于2mm的硅粉;(4)将硅粉置于高能球磨机中球磨,得到纳米级锂离子电池硅负极。本发明避免了传统太阳电池回收需要消耗大量酸碱液和后续加工利用时高耗能的缺点,无需对太阳电池硅表面氮化硅、银、铜进行处理,仅通过高能球磨和煅烧的方法将上述成分直接利用得到锂离子电池硅负极材料。
737
0
本发明提供一种锂离子电池复合负极材料及其制备方法,通过将Bi2Mn4O10粉末和科琴黑(ECP)‑N复合材料混合后,加入溶剂,经球磨得到Bi2Mn4O10/科琴黑(ECP)‑N材料前驱体,再经煅烧制得Bi2Mn4O10/科琴黑(ECP)‑N锂离子电池复合负极材料;所制得的材料具有优异的倍率性能和循环稳定性能,球磨在室温下即可。本发明所述方法容易操作、成本低廉、能耗低、环境友好,适合锂离子电池实际应用以及工业化规模生产。
751
0
本发明公开了一种球形磷酸铁锂及其制备方法,该制备方法包括以下步骤:(1)将LiH2PO4和FeSO47H2O以摩尔比1∶1溶于乙二醇中,在真空状态下磁力搅拌至全部溶解;(2)将适量尿素迅速加入上述反应液中,真空状态下继续搅拌,待尿素完全溶解后将反应物迅速转移到聚四氟乙烯反应釜中,200℃下继续反应;(3)反应结束后,将反应物自然冷却、抽滤、洗涤、真空干燥,即得球形磷酸铁锂。该制备方法简单易行、节约环保、无需添加任何的表面活性剂或有机高聚物。由该方法制得的球形磷酸铁锂产品均匀性良好、振实密度较高、具有良好的应用前景。
1042
0
本发明公开了一种用于从花岗伟晶岩矿石中综合回收锂铍钽铌的复合捕收剂,该捕收剂由工业脂肪酸、伯胺类化合物和烷基氨基丙酸类化合物按质量分别占80%~90%、5%~10%、5%~10%的比例混合,常压下加入氢氧化钠在30℃~40℃温度条件下进行化学反应40分钟,得到淡黄色膏状物即为本发明的复合捕收剂。该捕收剂对锂辉石、绿柱石、钽铌铁矿等矿物均具有良好的选择性捕收作用,其作用原理在于复合捕收剂与不同矿物表面暴露的锂、铍、钽、铌等阳离子活性质点之间可发生较强的静电吸附、氢键键合和化学吸附作用,石英、长石等脉石矿物表面因不含活性阳离子质点,捕收剂在脉石矿物表面的吸附能力较弱,从而使浮选过程具有较好的选择性并获得较好的分离效果。
1170
0
本发明公开了一种锂离子电池硅/碳复合负极材料的制备方法,属于锂离子电池材料技术领域。本发明是通过在用酸或碱刻蚀金属‑硅合金粉末合成纳米硅过程中添加碳材料,使纳米硅颗粒直接析出生长在碳材料表面一步原位形成硅/碳复合材料,并将其应用于锂离子电池负极材料。碳材料添加既可提高硅颗粒分散性,又可增强硅颗粒间电导率,同时可缓冲充放电过程中硅颗粒体积膨胀对电极材料的破坏。本发明还公开两种极片制备工艺,本发明制备的复合电极材料显示出较高的容量、库伦效率和优异的循环、倍率性能。此外,本发明工艺简单、操作方便、原料价格低廉、生产成本低,具有易于大规模工业化生产的特点。
一种具有高可逆容量与首次充放电效率的锂离子电池负极系统,属于电化学领域。本发明针对中间相炭微球、人造石墨或天然石墨三种锂离子电池负极材料,使用由LiPF6或LiN(CF3SO2)2溶解在离子液体1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐或N-甲基,丙基哌啶双三氟甲磺酰亚胺盐中而形成的电解质溶液。在此电解质溶液中,锂离子电池负极材料的可逆容量与首次充放电效率得到明显提高。电解质溶液中还可加入有机溶剂碳酸丙烯酯、碳酸乙烯酯、碳酸二甲酯或碳酸甲乙酯调节负极材料的电化学性能。
1232
0
本发明公开了一种双乙二酸硼酸锂的制备方法,具体步骤为:1)在含有四甲基氢氧化铵的有机溶剂中加入对称草酸二酯和有机锂盐,加热回流反应,得到反应后溶液;2)将对称联硼酸酯和甲酸分别加入上述反应后溶液中,继续加热回流反应;3)将最终反应溶液转移到管式炉内,在氮气保护微正压下高温反应,制得双乙二酸硼酸锂成品。本发明制备的双乙二酸硼酸锂纯度高,产率高,适合规模化生产。
本发明公开了一种制备锂电池负极材料的方法,包括以下步骤:(1)将锌盐和分散剂加入到乙二醇中,混合均匀,配制成锌盐浓度为0.01M-5M的溶液。(2)将溶液转移至高压反应釜中,150℃-200℃保温反应8-20h,然后冷却至室温。(3)过滤,滤饼先用去离子水洗涤,再用无水乙醇洗涤,然后将滤饼在80℃-120℃的鼓风烘箱中保温4-8h,得到干燥的ZnO前驱体。(4)将ZnO前驱体和铜盐混合均匀,研磨,得到混合粉体。(5)混合粉体在惰性气氛的保护下升温进行煅烧,制得黑色碳修饰的ZnO/Cu复合纳米材料。本发明制备的复合材料用作锂离子电池负极材料,能够有效缓解充放电时ZnO体积膨胀,抑制充放电效率降低和容量衰减过快的问题,解决无定形碳导电性能差的问题并增强材料导电性。
739
0
磁悬浮冷水机组与溴化锂冷热泵机组双运行系统及方法,该方法包括:冷却塔回水进入溴化锂冷热泵机组的第一蒸发器的换热管中,溴化锂冷热泵机组的冷剂水骤然蒸发,使第一蒸发器内换热管中的冷却水降温,降温的冷却水进入磁悬浮冷水机组的冷凝器换热管内,冷凝器内的制冷剂蒸汽放热液化,使冷却水升温,再次回冷却塔,如此循环制冷。本发明还包括一种磁悬浮冷水机组与溴化锂冷热泵机组双运行系统。本发明既提升了冷却效率,又利用了冷却过程中的热量,达到既可制冷又同时制热的目的。
885
0
一种二维锂离子电池添加剂VC2纳米片及其制备方法,所述VC2纳米片按照以下方法制成:(1)将二维VAlC2基体材料置于HF溶液中浸泡4~60h,得含有多层二维VC2的混合溶液;(2)置于超高速离心机中离心10~80h,得单层二维VC2纳米片的前驱体;(3)洗涤,得单层二维VC2纳米片;(4)干燥,得二维锂离子电池添加剂VC2纳米片。本发明VC2纳米片的一次粒径厚度可有效控制在20~300nm之间,作为锂离子电池添加剂时,充放电容量和倍率性能优异,提高了导电性,改善了电化学性能。本发明二维锂离子电池添加剂VC2纳米片的制备方法步骤简单,合成温度低,反应时间短,原料易得,便于产业化。
753
0
本发明公开了一种改善锂离子电池富镍正极材料综合性能的方法,包括以下步骤:(1)将锂离子电池富镍正极材料加入锰源溶液中,经搅拌或/和超声分散处理使锰源与所述正极材料充分混合均匀;(2)将步骤(1)得到混合均匀的物料依次进行干燥、热处理,即得到综合性能改善的锂离子电池富镍正极材料。本发明提出的改善锂离子电池富镍正极材料综合性能的方法,有效提高了富镍正极材料的电化学性能以及在空气中的储存性能;同时该方法简单,流程短,能耗低,易于大规模推广应用。
749
0
本发明公开了一种具有梯度结构的全固态锂电池及其制备方法,该全固态锂电池由具有梯度结构层的正极、固体电解质层、和金属负极或者具有梯度结构层的负极组成;制备方法是先配置不同组分浓度或粒度或分子量的正极浆料,按组分的浓度梯度或粒度梯度或分子量梯度将正极浆料涂覆在集电极上制备电极层,再在电极层上涂覆固体电解质层,最后粘连金属负极,或者配置不同组分浓度或粒度或分子量的负极浆料,按制备正极电极层的方法中相反的浓度梯度或粒度梯度或分子量梯度将负极浆料涂覆在电解质层上制备负极电极层,最后粘连集电极,即得具有梯度结构的全固态锂电池;该制备方法简单,制得的全固态锂电池大倍率充放电稳定,大电流下能正常工作。
1071
0
本发明公开了石榴石结构钽酸镧锂基固体电解质材料及其制备方法;该钽酸镧锂基固体电解质材料为Li5La3Ta2O12的镧位和/或钽位掺杂的化合物;制备方法是先将五氧化二钽溶于H2C2O4溶液后,加入锂盐、镧盐,以及镧位掺杂化合物的盐和/或钽位掺杂化合物的盐后,混合成溶液;在所得混合溶液中加入EDTA反应,直到出现透明清亮的溶胶;再加入水溶性高分子聚合物继续反应直到出现凝胶;得到的凝胶干燥后,煅烧;将煅烧后得到的颗粒模压成坯体,将胚体再进一步煅烧,即得;该制备方法条件温和、工艺简单、操作简单,可工业化生产,制得的固体电解质材料电化学稳定性好、电导率较高,它可用于全固态锂离子电池的制备。
本发明公开了一种复合掺杂及包覆型锂离子电池正极材料LiFePO4的制备方法,包括以下步骤:置备作为原料的锂源、铁源、磷源和含掺杂金属元素化合物,掺杂金属包含Nb、Mg、Ti、Mn和Zn;对原料进行混合打浆、干燥,得到粉状前驱体;将得到的粉状前驱体进行预烧;对预烧后的产物进行二次配料和球磨处理,将得到的混合料进行烧结,得到锂离子电池正极材料LiFePO4。本发明制得的锂离子电池正极材料LiFePO4中混合掺杂有五种金属元素,D50在1~2μm,比表面积在16~21.5m2/g,振实密度≥1.5g/cm3。本发明的工艺简单易控、生产成本低,本发明得到的产品成分均匀、物化性能及电性能均优良。
1021
0
本发明公开了一种高效回收废旧锂电池中正极活性材料的方法。其主要特点是先将破碎后的电芯碎片加入热水中搅拌,过滤烘干后进行第一次振动筛分,分出大部分活性材料;筛上部分磁选后通过碱浸溶解铝箔,碱浸滤液用稀酸及碳酸氢氨溶液调节PH回收铝;过滤烘干后进行第二次振动筛分,分出残留的粉体材料;筛上部分置于水中进行水旋分,倾去上层塑料隔膜后,用稀硫酸和硫代硫酸钠溶液冲洗铜片以使粘结在铜片上的碳粉和活性粉料松动并脱落,经水洗后旋分,粉末浮于上层,将粉料与两次筛分的活性粉体合并,磁选后用NAOH溶液浸泡,碱浸后的活性粉体材料经过滤烘干后煅烧,作为后续处理的活性粉料。使用该方法可使废旧锂离子电池中铜和铝的回收率分别达到98.5%和97%,活性材料的回收率约为99%。
932
0
本发明公开了一种二苯磺酰亚胺作为添加剂的电解液包括锂盐、非水有机溶剂和添加剂,所述添加剂为二苯磺酰亚胺,其重量百分比含量为0.5wt%‑2wt%,所述非水有机溶剂为环状碳酸酯和链状碳酸酯的混合物,所述锂盐浓度为1M。本发明采用上述一种二苯磺酰亚胺作为添加剂的电解液,通过添加二苯磺酰亚胺在正极表面形成稳定、导锂离子的固态电解质界面膜,可以有效减缓背景技术中提到的问题发生,从而延长高截止电压下锂电池的循环寿命。
712
0
本实用新型公开了一种锂电池组用防护装置,包括:防护箱,所述防护箱直接放置于桌面;限位板,所述限位板滑动连接于防护箱内侧;调节罩,所述调节罩安装于防护箱外侧;保护盖,所述保护盖对称设置于调节罩内侧,所述防护箱内侧设有对锂电池进行保护的防护层,所述防护箱内部滑动连接有连接杆,所述防护箱内部与连接杆和限位板相对应的位置设置凹槽,所述连接杆内侧安装有调节杆,所述连接杆上表面轴承连接有衔接杆,所述调节杆外部螺纹连接有推动衔接杆移动的安装块。该锂电池组用防护装置,便于对调节结构进行隐藏,保护盖表面无凸起方便该防护装置的堆叠,便于对不同数量的锂电池进行限位保护。
942
0
本实用新型涉及一种混合动力汽车中锂电池的热管理系统,包括带进风口和出风口的箱体,箱体内竖直放置多列锂电池组,相邻锂电池组之间安装耦合散热装置,所述耦合散热装置包括两块竖直的隔板和相变材料,两块隔板相对的一侧沿水平方向分别均匀设有多个竖直的翅片,相邻两块翅片与两块隔板组合形成一个竖直的安装槽,所述相变材料密封安装在部分安装槽内,其余安装槽作为空气流道,且相邻两个装有相变材料的安装槽间隔一个或多个空气流道。本实用新型作为一种混合动力汽车中锂电池的热管理系统,结构简单,耗能低,温度控制效果好,成本低,同时具有散热、加热和保温等多样化功能。
1097
0
本发明公开了一种废旧锂离子电池有价金属回收与正极材料再生的工艺,包括以下步骤:对回收的废旧锂离子电池完全放电、拆解、剥离、煅烧和研磨获得LiNi1/3Co1/3Mn1/3O2正极材料;将该正极材料用浸出剂浸出,得到富含锂的浸出液和含有镍钴锰的沉淀;将所得沉淀分散于水中,加入碱液,调节pH得到氢氧化镍钴锰沉淀;将氢氧化镍钴锰沉淀过滤得到三元前驱体,按三元前驱体物质的量计与过量锂源配比锂化,经研末混合、煅烧,得到正极活性材料;将过滤后所得滤液加入无机酸,生成新的有机酸,实现有机酸的循环使用;使用本发明的方法,可实现三元正极材料循环利用,而且工艺简单,能有效降低加工成本,并且可实现有机酸的循环使用。
899
0
本发明公开了一种提高锂离子电池负极材料钛酸锂附着力的方法,在含有负极材料钛酸锂、导电剂、粘结剂和溶剂的负极浆料的匀浆过程中,向负极浆料内加入占钛酸锂重量的0.1-5%的硅烷偶联剂,然后搅拌,出浆,涂布,辊压,即得。本发明用于制作钛酸锂负极,明显提高了涂布后的负极极片的附着力,有效提高了负极极片的压实密度,降低了负极的掉粉现象,提升了电极导电性能,从而可以有效提高电池的容量和循环性能。
765
0
本发明公开了一种废旧锂电池回收中集流体的高效剥离方法,将废旧锂电池的电芯机械破碎至1~5MM,150~600℃下进行热处理,热处理后的粉料通过振动筛分,筛下部分为钴酸锂和炭粉末,筛上部分为铜片和铝片。本发明可实现集流体与正负极粉体材料剥离工序的流水线机械自动化作业,可将废旧锂电池物理拆分的劳动强度至少降低50%,拆分效率提高40~50%,并为大规模废旧锂电池的回收利用奠定基础。
1028
0
本实用新型提出了一种锂离子电池测试夹具,包括底座,以及可拆卸地固定设置于底座上的若干个测试单元,所述测试单元包括相对设置的两个端盖和置于两个端盖之间的收纳部,所述收纳部用于放置待测电池,两个端盖之间通过连接件连接,每个所述端盖包括挡板,以及可伸缩地固定设置于挡板上的金属板,每块金属板上还设有电极引出杆。此结构的锂离子电池测试夹具,首先,测试单元的数量可以为多个,即一次可测试多块电池,因此,测试效率较高,其次,锂离子电池测试夹具的结构较为简单,空间利用率较高,使用成本也更低廉。再次,测试时,把电池置于收纳部之间即可进行测试,还可以测试不同形状的电池,因此,使用较为方便,可操作性强,可靠性好。
1115
0
本发明公开了一种废旧动力锂电池有价成分分选回收的方法,该方法是将废旧动力锂电池带电破碎后挥发回收有机溶剂,且无害化处理六氟磷锂,再采用多组份筛分风选机分选出轻物料、重物料以及中间重量物料;从轻物料中回收隔膜,中间重量物料与粉料进行热解,回收热解产生的热解油和热解气作为热解辅助燃料,热解残渣经过智能揉洗机分离出粉料后用色选分离出铝箔、铜箔,从重物料中分选出外壳、桩头与塑料;该方法的整个过程中的废水废气集中处理,无污染物排出,且能够实现废旧动力锂电池中全组分高效回收,同时该方法充分实现废物再利,降低能耗,减少环境污染,且流程简单,适用的电池种类广。
1132
0
一种磁悬浮和溴化锂吸收式双模运行制热装置及方法,其中的磁悬浮和溴化锂吸收式双模运行制热装置包括磁悬浮冷水热泵机组、制热机组和烟气回收装置,制热机组与烟气回收装置连接,形成一个由制热机组指向烟气回收装置的烟道;烟气回收装置与磁悬浮冷水热泵机组连接,形成一个循环的水道;磁悬浮冷水热泵机组与制热机组连接,形成一个由磁悬浮冷水热泵机组指向制热机组的水道。本发明采用合理的结构,将溴化锂制热机组与磁悬浮双级变频压缩式冷水热泵结合,并对溴化锂制热机组产生的烟气进行回收,用于燃气潜热得以充分利用,提升供热效率15%以上,并且不降低供热温度。此外,烟气冷凝排放还具有消白烟和降低氮氧化物,硫氧化物的作用,节能又环保。
1089
0
本发明公开了一种氧化铝包覆锂离子电池正极材料的制备方法,包括以下步骤:(1)将正极材料的氢氧化物前驱体加水搅拌,得正极材料前驱体浆液;(2)将偏铝酸钠溶解于水中,得铝盐溶液;(3)将正极材料前驱体浆液加入铝盐溶液中,搅拌,通入CO2,得氢氧化铝包覆的正极材料前驱体;(4)将氢氧化铝包覆的正极材料前驱体的浆料过滤、洗涤、烘干,得氢氧化铝包覆的正极材料前驱体粉末;(5)将氢氧化铝包覆的正极材料前驱体粉末与锂盐混合,得混合粉末;(6)将混合粉末热处理,得氧化铝包覆锂离子电池正极材料。该方法在水溶液中进行,不使用有机溶剂,并且通过该方法提高了锂离子电池的放电容量和循环效率。
903
0
本发明公开了一种咔唑非水电解液,包括锂盐、非水有机溶剂和添加剂,所述添加剂为咔唑、N‑乙基咔唑和乙烯基咔唑中的一种或几种的混合物,添加剂的重量百分比含量为0.25‑1.0wt%。锂盐的浓度为1M。本发明还公开了一种咔唑非水电解液的制备方法,含有咔唑非水电解液的锂离子电池。本发明采用上述咔唑非水电解液及其制备方法及锂离子电池,能够解决现有的电解液充放电次数和库伦效率低,存在安全隐患的问题。
1156
0
本发明提供了一种低能耗高效回收锂电池正极材料的方法。先从废旧锂电池中分离出正极活性材料,然后以次磷酸钠、甲酸铵、鞣酸作为还原剂,以腐殖酸‑丙烯酸接枝共聚物作为分散剂,对活性材料进行酸浸,得到含有回收金属离子的浸出液。该方法可在常温下还原浸出锂电池正极材料中的金属,浸出率较高,并且分散稳定性高,使还原和浸出过程可在低速搅拌下进行,从而实现低能耗高效回收锂电池正极材料中的金属。
905
0
本发明涉及一种提锂用复合多孔电极材料的制备方法,包括:采用聚多巴胺对电极活性物质进行表面包覆改性,利用聚多巴胺具有优先集聚和传输锂离子,及其亲水的作用,提高电极活性物质对溶液的亲和性和锂的选择性;并以水性粘接剂代替传统的PVDF粘接剂,进一步提高电极的亲水性。此外,通过造孔剂的添加和分段烘干制度,使电极形成“多孔—微裂纹”的复合结构,强化溶液在电极内部的传质。在此基础上,通过加入纤维结构增强剂,保证和提高电极结构的强度,避免了电极材料的脱落。本专利发明电极制备过程简单高效,易于工业化;所制备的电极具有良好的低温提锂和循环性能,且电极能够在大电流密度下工作。
928
0
本发明公开了一种锂电池用负极材料及其制备方法和应用,该负极材料按照重量份的原料包括:石墨尾矿15‑25份、六氯环三磷腈1‑5份、邻硝基苯酚钠3‑7份、黄腐酸3‑7份、环氧树脂E44 11‑19份、二乙烯三胺7‑15份。将石墨尾矿粉碎、与二乙烯三胺溶液混合加热搅拌处理;然后加入邻硝基苯酚钠溶液加热搅拌,再经抽滤、洗涤、干燥、煅烧;再与六氯环三磷腈、黄腐酸、环氧树脂E44混合,加去离子水搅拌、煅烧即得。本发明制得的负极材料具有良好的电化学性能,能提高锂离子电池的可逆比容量、充放电效率、循环性能稳定及倍率性能;还能对石墨尾矿再次利用,而且效果极为显著,制备工艺简单,操作方便,原料来源广泛,成本低,适合大规模工业化生产。
838
0
本发明公开了一种改良的固氟重构锂云母提取碱金属化合物的方法,该方法是以钙盐和钠盐的溶液或悬浮液作为重构助剂,与锂云母通过混合、造粒、干燥成型,再通过高温热处理,得到熟料,熟料用水浸出得到碱金属盐类化合物,滤渣再用酸浸出回收固氟重构试剂,同时副产优质的硅酸盐材料。该方法一方面实现了锂云母矿资源的综合利用,对锂、铷、铯等碱金属回收率高,另一方面实现了固氟重构试剂的循环利用,原料利用率高,大大降低了生产成本,有利于环保。
中冶有色为您提供最新的湖南长沙有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日