880
0
本发明涉及一种通过热解处理废旧锂离子电池制备氢氧化锂的方法,包括如下步骤:破碎处理放电后的废旧锂离子电池,得到破碎料;破碎料与生石灰混合,得到混合料;保护性气氛下热解混合料,得到热解渣与热解油气;热解渣依次进行球磨与筛分,得到集流体片与黑粉;黑粉进行水浸提锂,得到富锂溶液及提锂渣;富锂溶液进行蒸发结晶,得到氢氧化锂。本发明将破碎后的锂离子电池与生石灰混合热解,可促进粘结剂与隔膜等有机物的热解,改善热解气成分,有利于正极粉矿相的解构,提高了锂的回收率;且能够通过水浸和蒸发结晶制备氢氧化锂,流程简单,具有显著的经济效益。
818
0
本发明公开了一种锂镍钴复合氧化物、其制备方法及二次锂电池。一种锂镍钴复合氧化物通式为LibNi1‑x‑yCoxMyO2,其中,0.95≤b≤1.05,0.08≤x≤0.15,0.025≤y≤0.040,M选自Al、Mn、Ti、Sr、Zr、Mg、W、Nb及B中的至少一种;附着于锂镍钴复合氧化物表面的锂化合物中的碳含量相对于所述锂镍钴复合氧化物的总量为0.01wt%~0.05wt%,附着于锂镍钴复合氧化物表面的锂化合物中的锂含量相对于所述锂镍钴复合氧化物的总量≤0.05wt%。该锂镍钴复合氧化物具有良好的加工性能、高温性能以及安全性能。
811
0
本发明公开了一种锂电池正极材料及其制备方法与锂电池。该锂电池正极材料为富锂高锰掺钨正极材料,化学式为Li1+δNiaCobMncWeO2,其中,δ=0~0.2,a=0.05~0.35,b=0.05~0.3,c=0.45~0.7,e=0.005~0.012,该正极材料在电池充放电过程中具有高能量密度,并具有高的放电容量。本发明通过共沉淀反应制备得到所述锂电池正极材料的前驱体,再将所述前驱体和锂化合物混合、煅烧,得到所述的锂电池正极材料。本发明的锂电池包含所述锂电池正极材料,基于该富锂高锰掺钨正极材料的锂电池具有良好的循环性能和高倍率。
本发明涉及一种锂二次电池用正极活性材料、其制备方法和包含所述锂二次电池用正极活性材料的锂二次电池用正极、锂二次电池、电池模块和电池组。所述正极活性材料包含:锂钴氧化物粒子;和位于所述锂钴氧化物粒子的表面上的表面处理层,其中所述锂钴氧化物粒子包含所述粒子的表面侧中的贫锂的锂钴氧化物,所述贫锂的锂钴氧化物具有小于1的Li/Co摩尔比、包含在Fd‑3m空间群中并且具有立方型晶体结构,并且所述表面处理层包含选自过渡金属和13族元素中的至少一种元素。本发明可以抑制与电解质的副反应,并且可以获得高堆积密度和容量性能,以及改善的倍率特性和初始容量性能。
1167
0
本发明公开了一种安全锂离子电池卷芯和含有所述安全锂离子电池卷芯的锂离子电池。所述安全锂离子电池卷芯由包括负极片和正极片以及层叠设置在所述负极片与正极片之间的隔膜卷绕而成,所述安全锂离子电池卷芯的外侧电极片为所述负极片,且在所述安全锂离子电池卷芯外侧的所述负极片末端为无负极活性层的空白末端,在所述空白末端的背离所述安全锂离子电池卷芯内侧的表面上电连接有负极极耳,在所述空白末端的朝向所述安全锂离子电池卷芯内侧的表面上结合有耐温绝缘层,且所述耐温绝缘层与所述负极极耳在所述空白末端表面电连接点负对应。本发明安全锂离子电池卷芯和含有所述安全锂离子电池卷芯的锂离子电池安全性高,而且电化学性能好。
1112
0
本发明提供了一种从含锂电池废料中选择性提锂的方法。所述方法包括以下步骤:(1)将预处理后的含锂电池废料与氧化物水溶液混合,对得到的原料料浆进行浸出反应,反应后得到浸出料浆;(2)调节步骤(1)所述浸出料浆的pH至7‑13,对得到的反应料浆进行固液分离,得到固体渣和含锂净化液;(3)向步骤(2)所述含锂净化液中加入碳酸盐,进行沉锂反应,反应后固液分离得到碳酸锂产品和沉锂尾液,所述沉锂尾液在调节为酸性后返回步骤(1)的浸出反应体系中。本发明提供的方法具有广泛适用性,流程短、操作简便,反应条件温和,反应原料成本低廉,整个流程无三废排放,实现了含锂电池废料中锂资源的高选择性回收。
907
0
一种高功率型钛酸锂锂离子电池涉及锂离子电池制造技术领域,尤其涉及一种高功率型钛酸锂锂离子电池。采用正极活性物质为尖晶石锰酸锂、材料进行过体相掺杂及表面包覆处理,采用负极活性物质为钛酸锂‑石墨烯、纳米钛酸锂‑二氧化硅复合的一种或两种,隔膜采用PP/PE复合隔膜,电解液成分为:内含有机溶剂,溶于有机溶剂的锂盐,及添加剂。高功率型钛酸锂锂离子电池经过正负极片制备、正负极片叠片、并芯包、铆接盖板、入壳、激光焊、烘烤、注液、高温化成、高温陈化、抽气封口、分容、即得成品单体。
1099
0
本发明公开了一种低品位锂源制备超薄金属锂带的方法及系统。所述方法包括:在真空环境中蒸发除去低品位锂源中的低沸点杂质并获得液态金属锂的第一步骤;以及,采用真空蒸镀法将所获液态金属锂沉积于基材上而形成超薄金属锂带的第二步骤。所述系统包括:真空蒸镀设备,集气装置,相互配合的至少一放卷机构和至少一收卷机构,以及,至少一主辊;在所述系统工作时,所述放卷机构和收卷机构被置于第一真空室内,所述集气装置、主辊和低品位锂源被置于第二真空室内。本发明采用低品位锂源作为蒸镀原料,将回收与真空蒸镀技术结合,一步法将低品位废旧锂中的金属锂提纯,并获得高纯、超薄、具有高附加值的金属锂带,有望应用于二次电池的负极材料中。
921
0
本发明涉及锂电池技术领域,尤其涉及一种锂电池系统支架及锂电池系统,锂电池系统支架包括上、下支架,上支架的两侧面上部对称设置有两个基座,上支架的两侧面下部对称设置有两个活动扣;上支架的上端面对称设置有两个销钉;下支架的下端面对称设置有两个垫块;当多个锂电池系统支架连接时,位于下方的锂电池系统支架的销钉可插入位于上方的锂电池系统支架的垫块销钉孔中,并且位于下方的锂电池系统支架的基座可与位于上方的锂电池系统支架的活动扣搭接,具有占用空间小、成本低、且安装灵活多变的优势。使用上述锂电池系统支架的锂电池系统可以自由组合,并支持平放及侧放两种安装方式,很好的满足了客户的需求。
1004
0
本发明公开了一种减少锂电池析锂的方法,包括以下步骤:1)电解液预处理:向电解液中通入氮气,氮气的通入压力为0.8~1.2MPa;2)将预处理后的电解液与电芯、外壳制作成锂电池,利用单层叠片三电极获取负极析锂电流C0;3)在45~55℃下,在1.3~1.45C0电流下对锂电池充电至电压4.2~4.25V,静置24~36h,后在0.05~0.1C0电流下放电至2.1~2.8V,停止放电。本发明的优点是由于对电解液进行预处理,向电解液中通入氮气,当采用高于析锂电流的电流充电时,负极表面会析出锂层,锂层与电解液中氮气发生反应,形成SEI膜,减少析锂现象发生,有效修复局部析锂点,改善锂电池的电池性能。
1037
0
本发明涉及用于制备磷酸铁锂纳米粉末的方法和通过该方法制备的磷酸铁锂纳米粉末,所述方法包括以下步骤:(a)通过将锂前体、铁前体和磷前体添加到反应溶剂中制备混合物溶液;和(b)将该混合物溶液置于反应器中并且进行加热,从而在1巴~10巴的压力条件下制备磷酸铁锂纳米粉末。与普通的水热合成法、超临界水热合成法和醇热合成法相比,本发明的方法可以在相对较低的压力下进行反应。因此,可以不需要高温/高压反应器,且可以确保过程安全性和经济可行性。另外,可以容易地制备具有均匀的粒度且粒度分布被有效控制的磷酸铁锂纳米粉末。
936
0
本发明提供了一种锂离子电池及其钴酸锂正极材料,所述钴酸锂正极材料为纳米钴酸锂,所述纳米钴酸锂以醋酸锂、醋酸钴和硝酸锂为原料制得的球形纳米钴酸锂颗粒,所述纳米钴酸锂颗粒的粒径为25-35纳米。相较于现有技术,本发明的所述钴酸锂正极材料可以提高锂离子电池的容量,改善其循环性能和充放电性能。
本发明涉及锂离子电池阴极材料聚吡咯修饰锂钒氧纳米管及其制备方法。本发明以五氧化二钒粉末、过氧化氢和一水氢氧化锂为主要原料,有机长链胺为模板剂,结合溶胶-凝胶法与水热合成技术制备锂钒氧纳米管,采用离子交换技术用聚吡咯修饰替换锂钒氧纳米管中的模板剂有机长链胺,获得聚吡咯修饰锂钒氧纳米管。以本发明方法制备的聚吡咯修饰锂钒氧纳米管作锂离子电池阴极材料,由于聚吡咯具有高的电导率及良好的柔韧性,不仅提高了电极材料的电导率,同时也改善了锂钒氧纳米管的结构稳定性,使得聚吡咯修饰锂钒氧纳米管在不同充放电倍率条件下具有良好的循环可逆性,有望进一步提高锂离子电池的电化学性能。
1038
0
本发明公开了一种锂铁电池用碘化锂有机电解液及其制备方法,有机电解液由电解质锂盐、有机溶剂、添加剂组成,其中锂盐为无水碘化锂或无水碘化锂与其它锂盐的组合,有机溶剂为醚类、砜类、碳酸酯类有机溶剂的组合,添加剂为添加剂A与添加剂B的组合;所述的制备方法步骤如下:(1)在干燥环境下,将有机溶剂、添加剂脱水后搅拌混合成为均一的液体;(2)将锂盐溶解在上述液体中,得到半成品;(3)使用锂化分子筛对所述半成品进行吸附脱水,吸附完毕过滤即得成品。用所述的碘化锂有机电解液制作的锂铁电池,既能降低成本,又大幅度提高了低温放电、高温放电和大电流放电性能,并满足了环保要求。
882
0
本发明公开了一种电解质锂盐及含有它的锂离子电池电解液,该电解质锂盐的化学式为LiC11H6BO3F2;结构式为:。锂离子电池电解液,含有非水有机溶剂、添加剂以及上述电解质锂盐,该电解质锂盐含量占电解液总重量的0.01~15%;本发明通过引入电解质锂盐LiC11H6BO3F2,提高了锂离子电池电解液的综合性能,锂离子电池电解液使电池的充放电容量、库伦效率和长循环性能都能得到明显的提高,同时电池内阻有一定程度的降低。此外,含有该有机锂盐的锂离子电池电解液具有良好的过充性能。
734
0
本发明的名称为一种锂离子电池电解液及其制备的锂离子电池。属于锂离子电池技术领域。它主要是解决因分解物的堆积而导致高温存储后的输出特性下降,从而造成电池循环性能的衰减的问题。它的主要特征是:包含锂盐、非水性有机溶剂和添加剂;所述非水性有机溶剂中溶解有功能性添加剂;所述添加剂中还包括功能性添加剂,功能性添加剂为基于三甲基硅氮类有机物和选自具有草酸骨架的锂盐、具有磷酸骨架的锂盐和具有S=O基的锂盐中的至少一种锂盐。本发明具有提高锂离子电池的循环性能和改善高温存储试验后的放电容量维持率的特点,主要用于商业锂离子电池中。
1220
0
本发明公开了一种从废旧钴酸锂电池中回收钴锂的方法,包括如下步骤:(1)对废旧钴酸锂电池进行预处理,分离出正负极活性物质,得到黑色粉末1;(2)将黑色粉末1置于密闭的高温炉中进行高温处理,处理温度800‑900℃,时间10‑30min,利用石墨将钴酸锂还原,得到黑色粉末2;(3)用水将黑色粉末2进行浸出反应,固液比1:20‑1:100,搅拌2‑4h,碳酸锂溶解进入液相中,钴金属留在固相中;然后固液分离,得到浸出液和滤渣;(4)将浸出液蒸发,得到白色粉末,即为碳酸锂;(5)将滤渣烘干,采用磁选方法将其中的金属钴分离出来。本发明基于电池中现有物质在高温中石墨还原钴酸锂,不使用硫酸浸出,不使用碳酸钠沉锂,能够节省用料;锂在前端提取,锂回收率高。
1038
0
一种从含锂卤水萃取后的负载有机相中反萃锂的方法,所述反萃锂的方法中反萃液为水或低酸度溶液;反萃过程采用多级逆流方式;且反萃过程包括以下步骤:在第一级中,加入含锂卤水萃取后的负载有机相,与第一级反萃液接触,反萃得到负载锂的反萃液;在第二级到倒数第二级中,反萃后的负载有机相进行下一级,反萃后的负载锂的反萃液进入上一级;在最后一级中,加入新鲜的反萃液,反萃得到的有机相再生循环利用。本发明的反萃锂的方法采用水或低酸度的反萃液,利用多级中氯离子浓度控制锂和共萃铁离子的反萃,锂高效反萃,同时铁保留在有机相中,避免了高酸反萃对设备的腐蚀和外加碱液造成的成本增加,简化了锂在反萃液中的回收过程。
本发明涉及一种三氧化二铁纳米材料及其制备方法、锂离子电池负极及锂离子电池。三氧化二铁纳米材料,由三氧化二铁纳米片组装成的微纳米管构成,所述三氧化二铁纳米材料的比表面积为75.3?126.2m2·g?1;微纳米管的外径700?900nm,内径300?500nm,管长4.0?10.0μm;制备方法步骤包括混合、转化、煅烧,本发明方法制备的微纳米管状的Fe2O3产品为红色粉体,纯度高,产品质量好。三氧化二铁纳米薄片组装的微纳米微纳米管,具有较大的比表面积,该材料作为锂电池负极材料与电解液接触充分,在嵌锂和脱锂反应过程中能显著缓解体积膨胀和收缩,具有较大的比容量和较好的循环性能。
810
0
本发明涉及一种稀释的混合锂盐的锂硫电池电解液,属于锂硫电池技术领域。该电解液含有混合锂盐、溶解混合锂盐的溶剂和稀释剂,溶剂混合锂盐的溶剂优选地为酯类或醚类溶剂,稀释剂优选地为氟代醚类化合物或芳香类化合物。本这种电解液能够用于高性能锂硫电池,同时起到稳定锂负极和促进硫正极容量发挥的作用。该电解液通过加入不同的锂盐按一定比例混合达到兼顾锂负极保护和硫正极容量发挥的双重功效,并且由于稀释剂的加入使得该电解液具有高的电导率,低的粘度,良好的浸润性,大大降低了电解液的成本,能够大规模应用,具有极高的商业价值。
891
0
本发明提供一种高比容量锂离子电池材料、制备方法及锂离子电池,涉及新能源技术领域。制备步骤为:将Zn盐和咪唑类化合物在室温下反应制得Zn‑ZIF纳米片;Zn‑ZIF纳米片经煅烧得到ZnO和N掺杂的ZnO/NC纳米片。将ZnO/NC纳米片分散于葡萄糖溶液中,加入钼酸盐和硫脲,经高温水热反应后得到一种高比容量锂离子电池材料(ZnS@MoS2/NC)。该电池材料具有独特分级多孔片状结构,抑制了片层材料的团聚与堆叠,增强赝电容容量。该材料中,ZnS与MoS2形成了双金属硫化物异质界面,为锂离子的吸附提供了更多位点,也促进了锂离子的扩散传输,获得更好的倍率性能。
1035
0
本发明公开了一种金属锂电极的表面氮化修饰方法及获得的金属锂负极和用途,含氮化合物溶解于有机溶剂中形成含氮化合物溶液,将抛光后的金属锂片浸没在含氮化合物溶液中或者将含氮化合物溶液喷涂在锂片表面,静置、反应一段时间后,将多余液体擦除,烘干去除溶剂,得到表面存在含氮修饰层的金属锂负极。在金属锂表面原位生成具有稳定结构的含氮修饰层,具有良好的离子传输能力,同时可以促进锂离子的均匀沉积,抑制锂枝晶的产生,修饰层形成的屏障可以有效阻止电解质与金属锂的副反应发生,起到稳定界面的作用,从而实现高能量密度金属锂电池的稳定输出和长寿命循环。同时,本发明具有简单易行,适合大规模生产的优点。
770
0
本发明提供阳极活性物质、其制造方法以及锂二次电池,所述阳极活性物质包含锂过渡金属氧化物系粒子和在部分或全部上述粒子表面形成的二氧化钛涂层,所述二氧化钛涂层为部分还原的TiO2‑x(0< x< 2),所述锂二次电池包含上述阳极活性物质。本发明的阳极活性物质借助在表面形成的部分还原的二氧化钛涂层来分解残留在表面的含锂杂质,提高电导率,从而能够有效地改善具备该阳极活性物质的电化学元件即优选的锂二次电池的电化学性能。
713
0
提供了一种制备一种混合过渡金属氧化物的方法,包括在氧气浓度为10至50%的缺氧气氛下,使Li2CO3和一种混合过渡金属前体进行固态反应,以制备具有式I?LixMyO2所示组成的粉末锂混合过渡金属氧化物,其中M、x与y如说明书所定义。因此,由于具有给定组成的高Ni锂混合过渡金属氧化物可以通过使用廉价且易于处理的原料,经简单的固态反应在空气中制备而成,本发明使得可以大规模制造锂混合过渡金属氧化物,并且大幅减少制造成本、且具有高制造效率。此外,所制造出来的锂混合过渡金属氧化物基本上不含杂质,并因而呈现高电容量以及优良的循环稳定性,并具有显著改善的储存稳定性以及高温稳定性。
本发明公开了一种锂离子电池磷酸铁锂/聚并吡啶复合正极材料及其制备方法。该方法是将锂源化合物、磷源化合物、铁源化合物、包覆材料导电聚合物聚并吡啶或者导电聚合物热裂解前躯体聚丙烯腈混合,在250~400℃下加热5~20小时,冷却、球磨后得含有PO43-、Li+、Fe2+和导电聚合物的反应前驱体;将反应前驱体在500~800℃下煅烧10~40小时,冷却后即得锂离子电池LiFePO4/PPyPy复合正极材料。本发明有效地控制复合掺杂改性正极材料的化学成分、结构以及材料的粒径,提高材料的电子导电率和锂离子扩散速率,改善材料的电化学性能;同时也简化了材料的合成工艺,便于进行工业化生产。
760
0
本发明涉及锂电池领域,目的是提供一种安全锂离子动力电池及锂离子电池组的测试方法。一种安全锂离子动力电池,包括电池盒、置于电池盒内的若干个成排排列的锂离子电池和个数比锂离子电池的个数少一个的短路保护器;锂离子电池和短路保护器间隔串联电连接构成的锂离子电池组。该安全锂离子动力电池在使用过程中因外部挤压和震动等原因不会产生冒烟、着火或爆炸。锂离子电池组测试方法简单实用。
768
0
本发明属于锂离子电池正极材料领域,具体涉及一种改性富锂锰基锂离子电池正极材料及制备方法与应用。本发明将富锂锰基正极材料和可溶性高分子聚合物分别加入到溶剂中,得到富锂锰基正极材料悬浊液体系和可溶性高分子聚合物溶液体系;然后将稀土化合物加入到可溶性高分子聚合物溶液体系,得到稀土化合物/可溶性高分子聚合物溶液体系;再将富锂锰基正极材料悬浊液体系加入到稀土化合物/可溶性高分子聚合物溶液体系中混合均匀,然后干燥、煅烧,得到改性富锂锰基锂离子电池正极材料。该方法具有简洁、条件易控制,便于规模化生产的优势,制得的改性富锂锰基锂离子电池正极材料具有晶体结构完好,导电性强,倍率性能好等优势。
830
0
本发明提供了一种锂离子电池浸出液中锂离子的分离方法,首先将锂离子电池浸出液、主萃取剂、辅助萃取剂和盐酸溶液混合,得到混合物料,随后调节所述混合物料的pH值,得到酸性萃取体系,进行萃取,得到含有锂离子的平衡水相,其中辅助萃取剂为三价铁盐溶液,萃取体系为酸性。本发明提供的方法,通过辅助萃取剂的添加,与锂离子形成络合物,便于锂离子络合物的形式与主萃取剂的融合,进而促进锂离子的萃取过程顺利进行;酸性的萃取体系能够有效抑制辅助萃取剂的水解,并且避免较高浓度的氢离子,阻碍锂离子与辅助萃取剂形成络合物的进程,提高了锂离子的回收率。本发明提供的方法对于浸出液中锂离子的回收率可达到99%以上。
1273
0
本发明公开了一种磷酸铁锂前驱体制备磷酸铁锂的方法和设备,方法包括磷酸铁锂前驱体材料的预处理、预烧结、烧结三个工艺流程步骤,在非氧化氛围环境下,使用一定数量的微波加热器对前驱体材料进行加热处理,通过控制处理温度和处理时间,完成三个工艺流程步骤,最终制备获得磷酸铁锂产品。设备包括进料口、进料换气室、预处理单元炉、预烧结单元炉、烧结单元炉、出料换气室、冷却降温出料机构、出料口、抽真空装置、保护气体输入装置和设备控制电路。本发明优化了磷酸铁锂微波烧结工艺,增加预处理和预烧结工艺步骤,解决了产品品质控制的关键问题。本发明的设备,多单元炉连续微波烧结,提高烧结效率,实现了规模化、产业化生产。
898
0
本发明涉及锂电池的极耳、具有该极耳的负极结构和锂电池。该锂电池为使用锂或锂合金作为负极片的电池。其中,所述极耳具有非压接区域和用于压接于负极片的压接区域,压接区域具有第一突起部,第一突起部包括至少一个第一突起。本发明的极耳具有第一突起部,因此其与负极片相接触的时候可以压入负极片,从而增强两者之间接触的可靠性。
中冶有色为您提供最新的有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日
2026年01月23日 ~ 24日