748
0
一种以玻璃干凝胶为包覆层的软磁复合材料及其制备方法,涉及一种软磁材料及其制备方法。本发明解决无机绝缘层和磁粉的热膨胀系数相差较大且无机绝缘层本身的热膨胀系数不可变化的问题。一种以玻璃干凝胶为包覆层的软磁复合材料是由磁粉、包覆磁粉的二氧化硅层和包覆在二氧化硅层外的玻璃干凝胶层组成。制备方法:一、磁粉的预处理;二、在磁粉表面包覆二氧化硅层;三、制备玻璃溶胶;四、在二氧化硅层外包覆玻璃干凝胶层;五、软磁复合材料的坯料的制备;六、软磁复合材料的制备。本发明应用于开关磁阻、谐振电感、防抱死制动传感器、电磁驱动装置、无刷直流电机、旋转机械和低频滤波器领域。
1126
0
一种低膨胀高导热的Cf/Al复合材料及其制备方法。本发明涉及一种碳纤维增强金属基复合材料及其制备方法。本发明是为解决现有碳纤维增强金属基复合材料无法采用传统的缠绕工艺进行纤维缠绕、热导率不高以及热膨胀系数较高的问题。产品:由体积分数为40%~60%的沥青基碳纤维和余量的纯铝基体制备而成。方法:一、缠绕纤维预制件;二、熔炼铝液;三、预制件预热;四、压力浸渗;五、冷却处理;六、退火处理。本发明设计和制备不同过渡圆弧直径的模具,保证碳纤维缠绕的连续性并使纤维定向排列;通过延长保压时间和降低冷却速率让提高碳纤维和铝合金基体之间界面结合,避免在冷却过程中出现界面开裂等缺陷。
1133
0
碳纳米管-竹炭复合材料及其制备方法和应用,涉及一种碳纳米管与竹炭的复合材料、其制备方法和应用。解决现有水处理工艺中对受污染水中氨氮的去除能力较差以及微污染去除效果不明显的问题。碳纳米管-竹炭复合材料是将羧基化碳纳米管与竹炭按质量比为1∶1~10比例混合的混合物在400~600℃煅烧4~6h得到的。在去除低温水源水中氨氮的方法中的应用。将具有光催化氧化氨氮的能力的羧基化碳纳米管负载改性竹炭,使碳纳米管-竹炭复合材料对低温下受污染水体中氨氮的去除效率好,达60~80%,重金属和持久性有机污染物能够得到部分去除。制备方法简单。
本发明提供的是一种核壳结构的Gd-Si-Ce6多功能介孔纳米复合材料的制备方法。采用几种经典的反应制备粒径均匀、分散性良好的空心有序介孔纳米材料;采用CTAB作为表面活性剂能够形成有序的介孔二氧化硅层,不仅为引入大量的功能分子团提供了较大的表面积,还为吸收和封装生物分子提供了较大的孔径;采用两种硅烷做前驱体合成了空心有序介孔结构纳米复合材料。所得复合材料内部具有环形空腔结构,可用于存储大量药物分子;表面具有一层介孔二氧化硅层,可实现内外物质交换;在660nm激发光下可产生高效的单线态氧,可用于癌症的光动力治疗;制备过程绿色环保、原材料廉价、过程简单易行。
1183
0
一种自润滑铝基复合材料及其制备方法,本发明涉及铝基复合材料领域,具体涉及一种自润滑铝基复合材料及其制备方法。本发明是要解决现有含润滑剂复合材料由于含油多孔或者是润滑剂强度不足,导致复合材料强度不够,最终应用范围被严重限制的问题。材料按体积分数由15%~35%钛硅碳、1%~10%六方氮化硼和55%~70%铝合金基体组成。方法:一、备料;二、双级球磨混粉;三、预制体制备;四、低温烧结;五、经脱模后即得到自润滑复合材料。本发明通过调整钛硅碳、六方氮化硼和铝基体粉末的尺寸及配比,经过双级球磨处理,利用低温粉末冶金法成功制备出具备高强、自润滑特性的铝基复合材料,充分发挥两种润滑剂组元的协同润滑作用。
889
0
纤维增强复合材料四面体点阵夹芯板的干法制备工艺,它涉及一种夹芯板的干法制备工艺。本发明解决了目前没有纤维增强复合材料四面体点阵夹芯板的干法制备工艺的问题。本发明的工艺步骤如下:一、模具处理;二、固定模具;三、铺放干纤维布:在模具的上下表面均铺放干纤维布;四、在铺有干纤维布模具的每对第一圆形通孔对应的第二圆形通孔形成的三个通孔之间来回往复穿缝长纤维束,直到铺在模具上下表面的干纤维布通过第一圆形通孔及对应的第二圆形通孔中的长纤维束穿缝为一体,得到纤维预成型体;五、树脂传递塑模;六、产品固化;七、脱模。利用本发明的干法制备工艺制得的纤维增强复合材料点阵夹芯板与传统金属点阵夹芯板相比,具有更高的比强度和比刚度。
1158
0
PBO纤维与碳纤维混杂复合材料高压储氢气瓶及制备方法,它涉及储氢气瓶及制备方法。它解决了现有采用单一纤维复合材料结构层制作的储氢气瓶综合性能较低的问题。本发明在铝合金内衬层(1)的外表面与粘接剂层(2)粘接,粘接剂层(2)的外表面与碳纤维复合材料内结构层(3)的内表面粘接,PBO纤维复合材料外结构层(4)的内表面缠绕在内结构层(3)的外表面上,外结构层(4)的外表面缠绕玻璃纤维复合材料外防护层(5)。方法为:在内衬层(1)的外表面上涂刷粘接剂层(2);叠加螺旋向和环向缠绕内结构层(3)、外结构层(4)及外防护层(5);固化后即得到本发明的储氢气瓶。本发明的储气瓶工作压力达30MPA,循环充放的疲劳次数大于8000次。
1104
0
一种外加纳米陶瓷颗粒增强晶内型铝基复合材料及其制备方法,它涉及一种陶瓷颗粒增强铝基复合材料及其制备方法。本发明要解决现有原位法制备的纳米颗粒增强铝基复合材料的颗粒尺寸很难控制在纳米级别范围之内以及现有的外加法制备的纳米颗粒增强铝基复合材料都是晶界型纳米颗粒增强铝基复合材料,强度、塑性较低的问题。本发明复合材料是由1~10份的纳米陶瓷颗粒和90~99份合金组成。制备方法为:一、称取上述组分,加入占总质量0.6%~8%的硬脂酸进行球磨;二、球磨后真空热压烧结成块体;三、将块体进行热挤压变形,得到纳米陶瓷颗粒增强铝基复合材料。本发明制备的复合材料强度高、塑性好。本发明应用于铝基复合材料制备领域。
1004
0
大尺寸、超薄金属内衬的复合材料压力容器及其制造方法,它涉及一种复合材料压力容器及其制造方法。本发明解决了在飞行器中,采用全金属压力容器存在重量大问题及采用现有工艺技术无法加工大尺寸、超薄金属内衬的压力容器问题。内衬1由铝镁合金材料或纯铝材料制成,内衬1的厚度δ为0.5~1.8mm、直径Φ为700~1000mm;内衬1的左封头1-2和右封头1-3为三点圆形封头形状,内衬1是通过旋压左封头1-2和右封头1-3、热处理、机械加工、筒身1-1的焊接及左封头1-2和右封头1-3与筒身1-1端头的焊接、整体焊接五个步骤制造完成。用本发明所述方法可以制造出重量轻、气密性好、强度高、尺寸大的复合材料压力容器。
用于空间带电粒子辐射防护的掺杂碳纳米管和纳米钽的聚乙烯复合材料及其制备方法和应用,涉及用于空间带电粒子辐射防护的复合材料及其制备方法的领域。本发明是要解决现有的辐射防护材料方法制备得到的辐射防护材料,铝防护层存在密度大而导致使用重量大,采用聚乙烯做为辐射防护材料时存在着由于其热稳定性较差,制约其使用范围的问题。用于空间带电粒子辐射防护的掺杂碳纳米管和纳米钽的聚乙烯复合材料,是由聚乙烯树脂、碳纳米管、纳米钽和偶联剂制备而成。制备:一、将碳纳米管、纳米钽和偶联剂混合得改性碳纳米管和纳米钽;二、混合改性碳纳米管和纳米钽与聚乙烯树脂后热压。材料是用于防护空间质子和电子辐射。在本发明适用于辐射防护领域。
1037
0
玻化微珠聚氨酯泡沫复合材料及其制备方法,它涉及一种复合材料及其制备方法。本发明解决了现有保温材料成本高、阻燃性与保温性难以同步提高的技术问题。玻化微珠聚氨酯泡沫复合材料由经过预处理的玻化微珠、聚氨酯白料、聚氨酯黑料与固体阻燃剂混合后,经过微波辅助加热、发泡复合和熟化制得,本方法如下:一、玻化微珠预处理;二、称料;三、制备混合料;四、微波辅助加热、发泡复合;五、熟化。本发明的玻化微珠聚氨酯泡沫复合材料的密度低(90~120kg/m2)、强度好(144~320KPa)、阻燃性好(极限氧指数可达到34.7%)、成本较低(原料成本比相同密度阻燃硬质聚氨酯泡沫降低了约37.5%)。
一种利用氧化石墨烯原位还原制备的石墨烯/铝硅酸盐聚合物复合材料及其制备方法,它涉及一种利用氧化石墨烯原位还原制备的石墨烯/铝硅酸盐聚合物复合材料及其制备方法。本发明是要解决现有铝硅酸盐聚合物机械性能低、韧性差和直接加入石墨烯粉末团聚分散性差的问题。利用氧化石墨烯原位还原制备的石墨烯/铝硅酸盐聚合物复合材料是由氧化石墨烯悬浮液、碱激发溶液及铝硅酸盐粉体制备而成;方法:一、氧化石墨烯悬浮液的制备;二、碱激发溶液的制备;三、氧化石墨烯/碱激发混合液的配制;四、石墨烯/铝硅酸盐聚合物浆料的配制;五、固化成型。本发明用于制备石墨烯/铝硅酸盐聚合物复合材料。该制备方法简便,成本低,可大规模制备,适用广泛。
1738
0
一种流延成型法与压力浸渗法结合制备层状铝基复合材料的方法,涉及一种层状复合材料的制备方法。本发明为解决目前层状复合材料的制备过程中层厚调控工艺复杂、界面结合性能弱和制备成本高等问题。方法:一、称料;二、SiC浆料制备;三、SiC粉末生片流延成型;四、预制体制备;五、去脂处理及模具预热;六、液态铝浸渗。本发明制备的层状复合材料的结构为SiCp/Al复合材料层与铝金属层交替的层状复合材料,复合材料层的厚度可以调节,与粉末铺层法相比成本低;与轧制法相比复合材料工艺成本低。本发明适用于制备层状铝基复合材料。
一种具有界面自修复性能的碳纤维/银纳米粒子/聚醚砜复合材料的制备及自修复方法,本发明涉及复合材料的制备及自修复方法。本发明是要解决传统的碳纤维复合材料界面易产生裂纹,降低材料的机械性能,并难以修复的问题。方法:一、制备碳纤维/银纳米粒子纤维;二、制得碳纤维/银纳米粒子复合材料;三、制得具有界面自修复性能的碳纤维/银纳米粒子/聚醚砜复合材料。本发明制备的碳纤维/银纳米粒子/聚醚砜复合材料具有界面自修复性能,并且光照可以修复碳纤维/银纳米粒子/聚醚砜复合材料的界面。本发明用于制备具有界面自修复性能的碳纤维/银纳米粒子/聚醚砜复合材料及受损碳纤维/银纳米粒子/聚醚砜复合材料的自修复。
具有界面自修复性能的碳纤维/金纳米粒子/聚醚砜复合材料的制备及自修复方法,本发明涉及碳纤维/金纳米粒子/聚醚砜复合材料的制备及自修复方法。本发明是要解决传统的碳纤维复合材料易产生裂纹,降低材料的机械性能,并难以修复的问题。方法:一、制备碳纤维/金纳米粒子复合材料;二、制得具有界面自修复性能的碳纤维/金纳米粒子/聚醚砜复合材料。本发明制备的碳纤维/金纳米粒子/聚醚砜复合材料具有界面自修复性能,并且光照可以修复碳纤维/金纳米粒子/聚醚砜复合材料的界面。本发明用于制备具有界面自修复性能的碳纤维/金纳米粒子/聚醚砜复合材料及受损碳纤维/金纳米粒子/聚醚砜复合材料的自修复。
一种柔性氧化亚锡纳米片/碳纳米管-石墨烯三维复合材料的制备方法,它涉及一种三维复合材料的制备方法。本发明的目的是要解决现有方法制备的锂电池负极材料的比容量低,倍率低和循环性能差的问题。制备方法:一、制备三维石墨烯泡沫;二、碳纳米管-石墨烯泡沫三维复合材料;三、生长氧化亚锡纳米片。本发明制备的柔性氧化亚锡纳米片/碳纳米管-石墨烯三维复合材料在100mA/g下保持900mAh/g以上的高比容量,100次循环之后容量未有明显衰减;本发明的材料具有良好的机械稳定性和良好的柔韧性,且在反复弯曲下没有断裂或剥离。本发明可获得一种柔性氧化亚锡纳米片/碳纳米管-石墨烯三维复合材料。
1546
0
木塑复合材料与抗菌剂复合得到全降解抗菌木塑复合材料的方法,本发明涉及木塑复合材料领域。本发明要解决可降解木塑复合材料在使用过程中易受到真菌、细菌、白蚁、藻类、海生生物等生物因子的侵蚀,导致性能下降,使用寿缩短命的技术问题。方法:对生物质纤维进行处理;与可降解塑料颗粒进行共混,挤出成型,粉碎,挤出成型,将步骤三获得的复合型材进行抗菌处理。本发明提出了一种全降解抗菌木塑复合材料,其抗菌性能好,耐老化性能优异,并且当需要时又可完全降解,对环境友好。本发明用于制备全降解抗菌木塑复合材料。
985
0
铝基复合材料液相旋转焊料回填式焊接新方法,它涉及一种焊接方法,特别是一种针对铝基复合材料的焊接方法。它是按如下步骤进行的:a、装卡:将下被焊件(3)安装在钎液槽(1)上,将上被焊件(4)置于下被焊件的上方,向钎液槽(1)中加入液态钎料,并使液态钎料没过上、下被焊件的对接缝;b、旋转摩擦:将液态钎料加热至380℃~500℃,并保温,将上下被焊件对接,并使两被焊件产生接触式相对旋转;c、钎料回填:使上下被焊件分开,并旋转上被焊件(4),使液态钎料回流,d、加压缓冷:对被焊件施压,使焊缝对接,并保持压力缓冷。本发明的焊接方法有效的解决了复合材料钎焊过程中钎料很难在母材上铺展和润湿的问题,同时解决了旋转去除氧化膜后钎料被挤掉流失的问题。
PBO纤维与碳纤维混杂复合材料高压储氮气瓶及制备方法,它涉及储氮气瓶及制备方法。它解决了现有采用单一纤维复合材料制作的高压储氮气瓶的特性系数低、安全性差的问题。本发明在氯丁橡胶内衬层(1)的外表面与粘接剂层(2)粘接,粘接剂层(2)的外表面与碳纤维复合材料内结构层(3)的内表面粘接,PBO纤维复合材料外结构层(4)的内表面缠绕在内结构层(3)的外表面上,外结构层(4)的外表面缠绕玻璃纤维复合材料外防护层(5)。方法为:在内衬层(1)的外表面上涂粘接剂层(2);叠加螺旋和环向缠绕内结构层(3)、外结构层(4)及外防护层(5);固化后即得到本发明的储氮气瓶。本发明的储气瓶工作压力达35MPA,循环充放的疲劳次数大于8000次。
本发明提供的是一种提高SiC纤维增强Ti/Al3Ti金属间化合物层状复合材料界面强度的方法。SiC纤维先经过去胶、粗化、敏化、活化的预处理工艺之后,进行再经过化学镀镍和电镀镍;处理后的将SiC纤维均匀且分散地铺在Al箔表面,之后将TC4箔材和Al箔材交错排列并保证上下表面均为TC4箔片;进行热压烧结。为了解决纤维与基体之间的润湿性问题,本发明提出了一种SiC纤维先化学镀镍后电镀镍的工艺方法,之后将镀镍后的SiC纤维引入到Ti/Al3Ti金属间化合物基层状复合材料中,以此来提高纤维增强金属间化合物基层状复合材料的整体强度和塑韧性。
本发明提供的是一种SiC颗粒增强金属间化合物基层状复合材料Ti/Al3Ti的制备方法。(1)将gAl粉、SiC粉末和硬脂酸在球磨机中球磨至混合均匀;(2)将球磨后的粉末加入到磨具中并采用粉末冶金方法制备出SiC颗粒增强铝基复合材料;(3)在450℃~500℃之间将SiC颗粒增强铝基复合材料热轧成箔板后与TC4箔材共同裁剪成相同尺寸;(4)将TC4箔材与SiC颗粒增强铝基复合材料交替排列;(5)放入真空热压炉中进行热压烧结,首先抽真空至3×10?2Pa,然后逐步加热至675℃~680℃,保温4小时,再缓慢升至750℃保温3小时。本发明制备出的复合材料综合力学性能优良,成本更低。
1216
0
一种石英纤维增强磷酸盐基耐高温复合材料的制备方法,本发明涉及一种复合材料的制备方法。本发明是要解决现有磷酸盐基复合材料在实际应用中存在力学性能低,耐热性差的问题。方法:一、制备纤维处理剂;二、制备磷酸二氢铝溶液;三、制备固化剂;四、制备磷酸盐基体;五、制备复合材料。本发明制备的石英纤维增强磷酸盐基耐高温复合材料力学性能高,耐热性能强。本发明制备的复合材料用于航空、航天等耐高温领域。
1153
0
石墨烯/氮化铬纳米复合材料及其制备方法,它属于电化学领域。本发明要解决采用磁控溅射的方法制备CrN薄膜的工艺过程比较难控制,且设备成本高的技术问题。本发明所述复合材料由石墨烯和氮化铬组成。制备方法是按下述步骤进行的:一、按称量天然石墨和硝酸铬尿素配合物;二、制备石墨烯悬浮液;三、配制硝酸铬尿素配合物水溶液,加到步骤二得到的石墨烯悬浮液中,继续搅拌,得到均匀的分散液;四、制石墨烯/Cr2O3复合材料;五、将石墨烯/Cr2O3复合材料放入气氛炉中,通入氮气,升温后保温,然后在氮气保护下降温到室温,得到石墨烯/氮化铬纳米复合材料。用作锂离子电池负极。
933
0
本发明提供一种SiO2陶瓷基复合材料表面活化辅助钎焊的方法:在SiO2陶瓷基复合材料表面附着均匀葡萄糖小分子颗粒;经过等离子处理在SiO2陶瓷基复合材料表面覆盖薄碳层;将处理后的材料按照SiO2陶瓷基复合材料与金属材料的次序依次叠,然后将钎料置于待焊接面之间,置于真空钎焊炉中,加热。本发明提供的方法,可以使接头强度显著提高,且可以有效地降低SiO2陶瓷基复合材料与金属材料间由热膨胀系数不同引起的残余应力,最终实现了陶瓷与金属的高质量连接。
一种应用于星载雷达天线面板的各向异性复合材料及其制备方法。它涉及应用于星载雷达天线面板的复合材料及其制备方法。本发明为解决现有应用于星载雷达天线面板的复合材料不能兼顾横向拉伸强度和纵向拉伸强度、综合力学性能差以及致密度不高的问题,该复合材料按质量分数由60%~80%的沥青基石墨纤维增强体、4%~6%的氮化铝颗粒和余量为基体铝合金制成。方法:先将氮化铝悬浮液涂覆到纤维表面,再固定成束,然后注入铝合金溶液进行浸渗,最后通过喷射冷却液使其快速冷却,得到复合材料。致密度高,在保持高的纵向拉伸强度和纵向热导率的同时,提高了横向拉伸强度和横向热导率,综合性能优异,可应用于星载雷达天线面板及其制备领域。
1020
0
金属基复合材料的镀镍液及镀镍方法,它涉及一种镀镍液及镀镍方法。本发明解决了现有技术中在复合材料表面形成的膜抗腐蚀能力小的问题。本发明的镀镍液成分为NiSO4·6H2O、NiCl2·6H2O、H3PO4、H3PO3和C6H8O7·H2O。镀镍方法如下:将金属基复合材料超声清洗后在磷酸溶液中保持30秒~2分钟,然后放入镀镍液中,施镀。用本发明方法处理后的金属基复合材料的点腐蚀电位提高了300~900mV,点蚀电位与腐蚀电位的差值增加了300~600mV,腐蚀电流密度降低了2~3个数量级。
电容碳/磷酸铁锂复合材料、其制备方法及以其为正极材料的锂离子电容电池,涉及一种磷酸铁锂材料、制备方法及以其作为正极材料的锂离子电容电池,解决现有磷酸铁锂制备成本较高,及采用现有磷酸铁锂制备的锂离子电池的高倍率充放电性能差的问题。复合材料为磷酸铁锂负载在活性炭上。制备方法为采用三价铁盐、磷源化合物、锂源化合物和有机小分子碳源为原料制备得磷酸铁锂前躯体,再将其和活性炭混合烧结即可。锂离子电容电池的正极浆料由电容碳/磷酸铁锂复合材料、导电剂和粘结剂组成。复合材料粒径分布均匀;三价铁盐为原料,制备方法成本降低;电容电池的充放电循环性能好,20C倍率下质量比容量大于60mA·h·g-1。
1136
0
氮化硼-碳氮化钛陶瓷复合材料及其制备方法,它涉及一种氮化硼基陶瓷复合材料及其制备方法。本发明解决了现有氮化硼基陶瓷材料制备中存在的成本高、生产周期长以及制作大尺寸的产品困难的问题。本发明氮化硼-碳氮化钛陶瓷复合材料由碳化硼粉、钛粉和稀释剂粉末制成。方法:一、原料干燥;二、球磨混合;三、制作毛坯;四、毛坯自蔓延燃烧,即得到氮化硼-碳氮化钛陶瓷复合材料。本发明的方法生产周期短,成本低,能够实现大尺寸产品的制作。
1618
0
一种大承载压缩型形状记忆聚合物复合材料释放机构,涉及一种聚合物复合材料释放机构。为解决传统释放机构在释放过程中产生冲击、爆炸碎片容易伤害周围设备的问题。本发明包括主结构连接器、释放机构连接器和加热驱动装置;主结构连接器和释放机构连接器的材质均为形状记忆聚合物复合材料;主结构连接器包括法兰式连接盘和释放机构外套筒;释放机构连接器包括连接底盘和释放机构内套筒;释放机构外套筒套在释放机构内套筒的外侧,施加外力使释放机构外套筒和释放机构内套筒相对固定;加热驱动装置加热,形状记忆聚合物复合材料材质的释放机构外套筒和释放机构内套筒受热恢复直筒状态,彼此分离实现释放。本发明适用于航天设备等的释放领域。
999
0
一种具有压电阻尼的碳纤维复合材料层合板及其制备方法,它涉及碳纤维复合材料层合板及其制备方法。本发明要解决现有技术存在极化工艺复杂,实际应用性差的问题。本发明的复合材料层合板由压电陶瓷粉、碳纳米管、双马来酰亚胺碳纤维预浸料组成。制备方法为:将双马来酰亚胺树脂溶液制成碳纤维预浸料;将经极化的压电陶瓷,研磨成压电陶瓷粉末并与双马来酰亚胺树脂溶及经酸化处理后的碳纳米管混合,超声后得预混胶料;将碳纤维预浸料铺于模具内,再涂刷预混胶料,放入热压机加压处理,即得。本发明的碳纤维层合板常温下阻尼损耗因子Δtan?δ≥0.016,层间强度提高3%~7%。本发明应用于航空航天飞行器,舰艇等对材料力学性能及减振降噪有特殊使用要求的领域。
中冶有色为您提供最新的黑龙江有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日