本发明提供了一种硅基负极活性材料的制备方法及硅基负极活性材料、锂离子电池负极材料和锂离子电池,涉及锂离子电池技术领域,所述制备方法包括在纳米硅外包覆二氧化硅层的过程加入高分子保护剂,并在二氧化硅层外包覆氧化石墨烯层,最后通过氢氟酸刻蚀,得到以纳米硅为核,从内至外依次包覆有二氧化硅层和石墨烯层的Si/void/SiO2/void/Graphene复合材料,缓解了现有通过单一硅纳米化或碳包覆以及制备多孔结构等方法很难获得硅基负极活性材料性能极大改善的技术问题,本发明提供方法制备得到的硅基负极活性材料不仅能够缓冲纳米硅核在充放电过程中的体积变化,而且能够提高硅基负极活性材料的导电性能和力学韧性。
1103
0
本发明涉及一种用碳酸锂制备锂的方法,其包括以下步骤:①按碳酸锂∶生石灰∶氧化铝=0.8-1.05∶0.819-0.83∶0.256-0.26的重量比分别秤取三者,并混合均匀;②将上步所得混合物造粒;③将上步所得颗粒在900℃-1100℃的温度下煅烧至颗粒中的碳酸锂全部分解,其中所含的二氧化碳全部排完为止;④将上步所得的颗粒粉碎后备用;⑤按上步所得的粉末∶硅铁=0.9-1.2∶0.193-0.21的重量比分别秤取粉末和硅铁,并混合均匀;⑥将上步所得粉末状混合物造粒;⑦将上步所得的颗粒在1500℃-1600℃和真空度P≤30Pa的条件下进行还原反应,生成锂蒸气;⑧将上步所得的锂蒸气冷凝后即得固态的锂;本发明所述方法具有产品纯度高、成本低、环境污染小、设备投资也较小的特点。
724
0
本发明涉及一种锂离子电池负极材料碳包覆掺锰钛酸锂的制备方法,该方法控制掺锰的量和实验条件,以锂盐、二氧化锰或四氧化三锰、二氧化钛和蔗糖或葡萄糖为原料,置于球磨机中,球磨烘干烧结,即可得到碳包覆掺锰钛酸锂复合材料,本发明用锰离子对钛酸锂晶胞内部的掺杂和其晶粒外部进行碳包覆,同时改性钛酸锂,使其电导率有了质的飞跃,大电流循环稳定性和可逆容量明显提高,满足于动力锂离子电池的负极材料性能要求。本发明制备工艺简单,易于工业化实现,通过该方法获得的碳包覆掺锰钛酸锂复合材料电化学性能优良,实现了最高的可逆循环容量和最佳的高导电率最佳组合,可以应用于高功率锂离子电池。
786
0
本发明涉及一种锂离子蓄电池正极活性材料尖晶石型锰酸锂的制备方法,该方法是通过掺杂碳酸锂、二氧化锰、三氧化二铝、三氧化二镍和三氧化二铬为原料来提高尖晶石型锰酸锂正极材料的循环稳定性。用该方法制备的尖晶石型锰酸锂正极材料,将其作为锂离子蓄电池的正极材料装配成试验电池,该试验电池经过充放电循环测试具有优良特性:首次放电容量高,达到112mAh/g;充放电循环性能好,50次循环后放电容量衰减仅为初始放电容量的5%。用该方法制备的尖晶石型锰酸锂正极活性材料具有制造方法简单、成本低廉、利于工业化生产的特点。装配成锂离子蓄电池后具有首次放电容量高,充放电循环性能好的优点。
895
0
本发明提供了一种金属锂负极及其制备方法与全固态锂离子电池,涉及电池领域,该金属锂负极包括金属锂片,金属锂片第一表面和/或第二表面依次设有LiPON膜层和LiF膜层。利用该金属锂负极能够缓解现有全固态锂离子电池中金属锂负极表面易生长锂枝晶影响电池循环寿命的问题,以及解决现有技术中锂负极表面的Li3PO4界面层电导率低影响锂离子传输的技术问题,达到抑制锂枝晶生长和提高锂电池循环性能的技术效果。
1104
0
以有机酸为分散剂制备锂离子电池用磷酸亚铁锂/碳复合材料,先将醋酸亚铁(或草酸亚铁)以及醋酸锂(或草酸锂或氢氧化锂)溶解于冰乙酸中制备得到A溶液,将草酸或柠檬酸与一定量的磷酸溶解于冰乙酸中得到B溶液,然后将B溶解缓慢加入到A溶液,制备得到以乙醇为分散体系的溶胶。将得到的溶胶转移到回流体系中回流(或直接置于空气中自然风干),将乙醇蒸发后得到一种凝胶,再将凝胶在惰性气氛中烧结后冷却后即可得到高性能的锂离子电池用磷酸锰亚铁锂/碳复合正极材料。本发明通过以有机酸为分散剂制备凝胶一方面可以制成纳米级分散颗粒,另一方面整个合成过程为绿色工艺,无环境污染,易工业化。
1201
0
LiCoPO4作为新兴的一种正极材料,具有潜在的高能密度、合成成本低、对环境友好等优点。本发明通过低温固相法合成锂离子电池用磷酸钴锂/碳复合材料,碳包覆从外观上改变了粒子的大小以及粒子间的紧密结合程度,减小了Li+的扩散路径,使锂离子的传导率提高。本发明选取合成原料包括磷酸二氢锂(或采用磷酸二氢铵与氢氧化锂或锂盐,如醋酸锂等,或采用磷酸与氢氧化锂或锂盐为原料)、碱式碳酸钴、导电碳黑(或乙炔黑或碳纳米管或其他碳材料,如葡萄糖)。首先将原料采用球磨或搅拌处理后,在最低合成温度为350℃时,合成时间12h,一步合成锂离子电池用磷酸钴锂/碳复合材料。
1272
0
本发明涉及锂离子电池正极材料技术领域,是一种稀土掺杂富锂层状锂离子电池正极材料及其制备方法和在制备锂离子电池中的应用;该稀土掺杂富锂层状锂离子电池正极材料的化学式通式为aLi[Li1/3Mn(2/3-t)Rt]O2·(1—a)LiMO2;其中0
897
0
本发明公开了一种利用钨锡尾矿梯次回收碳酸锂及氢氧化锂的方法,包括如下步骤:步骤S1、收集钨锡尾矿;步骤S2、一次球磨;步骤S3、浮选;步骤S4、二次球磨;步骤S5、浓硫酸焙烧;步骤S6、一次过滤;步骤S62、碱液中和滤渣并再次过滤;步骤S7、加碱搅拌滤液;步骤S8、二次过滤;步骤S82、加醇搅拌滤液,在所述步骤S8中得到的滤液中加入乙醇并搅拌过滤,得到包含氢氧化锂沉淀的滤渣,及碱金属氢氧化物溶液。本方法结合了钨锡尾矿中含有多种锂含量不同的含锂矿物及钨含量高的特点,整体设计,梯次利用,不仅回收了锂资源,形成高纯碳酸锂及氢氧化锂,也回收了宝贵的钨资源,同时得到高性能陶瓷原料,极大减少了废渣的形成,变废为宝,产生较高的经济价值。
933
0
本实用新型提供一种金属锂粗锂除杂设备。所述金属锂粗锂除杂设备包括:固定基座,所述固定基座上设置有除杂机构和调节机构;所述除杂机构包括有处理箱、熔铸罐、环形加热板、铸锭器、抽泵、连接管、伸缩软管和滤管,所述处理箱固定安装在固定基座的顶部,所述熔铸罐固定安装在处理箱内,所述环形加热板固定套设在熔铸罐上,所述铸锭器固定安装在处理箱的顶部,所述抽泵固定安装在处理箱的顶部,本实用新型解决的技术问题是提供一种能够通过熔铸的方式对粗锂进行除杂提纯,同时能够通过调节滤管的位置将液态金属锂完全吸收避免造成浪费的金属锂粗锂除杂设备。
1079
0
本发明涉及一种化合物硼酸钠锂和硼酸钠锂光学晶体及制备方法和用途,该化合物化学式为LiNa4B15O25,分子量661.05,采用固相反应法合成化合物;所述硼酸钠锂光学晶体,该晶体的化学式为LiNa4B15O25,分子量661.05,属单斜晶系,空间群C2/c,晶胞参数为a=14.153(3)Å,b=12.122(2) Å,c=12.719(2) Å,Z=4,V=2105.4(7)Å3。其透光波段在190nm至2600nm之间,该晶体机械硬度适中,易于切割、抛光加工和保存,适于制作光通信元件即渥拉斯顿棱镜、洛匈棱镜或光束分离偏振器,在光学和通讯领域有重要应用。
713
0
本发明涉及化学纯化领域,具体涉及一种纯化氯化锂原液的方法以及制备金属锂的方法。主要包括利用含有离子交换树脂的吸附系统对氯化锂原液进行吸附,得到杂质检测达标的氯化锂溶液。通过离子交换树脂分别与氯化锂原液中的钠、钾、镁、钙、铝、铁等阳离子以及硼酸根、硫酸根等阴离子分别进行离子交换进而纯化氯化锂原液。该方法操作简单、不用添加新的有机溶剂、工艺稳定,投资小,运行该方法的费用低,节约了生产成本以及生产时间。
861
0
本发明涉及四氟硼酸锂及其制备方法技术领域,是一种电池级无水四氟硼酸锂及其制备方法,该电池级无水四氟硼酸锂按下述步骤得到:第一步,向水合四氟硼酸锂中加入有机溶剂溶解后得到溶液;第二步,将溶液经过过滤后得到滤液和滤渣;第三步,将滤液进行蒸馏后得到馏出物和馏余物;第四步,将馏余物进行干燥后得到电池级无水四氟硼酸锂。根据本发明获得的电池级无水四氟硼酸锂达到了电池级无水四氟硼酸锂的级别要求;根据本发明所述的电池级无水四氟硼酸锂的制备方法能够将有机溶剂进行回收,有机溶剂的回收率的质量百分比为70%至95%,从而减少了有机溶剂的排放对环境造成的污染,同时,降低了制备无水四氟硼酸锂的成本。
1027
0
本发明涉及一种从碳酸锂制备氢氧化锂的电解法,该方法首先在电解槽中的阴极室和阳极室中间加入隔膜,并在阴极室和阳极室中都加入硝酸锂溶液,再将碳酸锂放入电解槽中的阳极室中电解通电,当阴极室有氢氧化锂结晶后,进行结晶过滤分离,即可得到氢氧化锂产品,滤液继续电解循环使用。采用该方法可以直接得到氢氢化锂一水合物产品,产品质量达到国标,而且,此法电流效率接近70%,该方法操作简单,安全可靠,从而省去了蒸发、浓缩工序,降低了产品成本。
本发明涉及一种锂铷钡铝硼氧氟和锂铷钡铝硼氧氟非线性光学晶体及制备方法和用途,锂铷钡铝硼氧氟的化学式为Rb3Ba3Li2Al4B6O20F,分子量1194.09,采用固相反应法制成,锂铷钡铝硼氧氟非线性光学晶体的化学式均为Rb3Ba3Li2Al4B6O20F,分子量905.82,属六方晶系,空间群P‑62c,晶胞参数为a=8.7017(2) Å,c=16.9807(8) Å,V=1113.51(6)Å3。化合物锂铷钡铝硼氧氟采用固相反应法合成;锂铷钡铝硼氧氟非线性光学晶体采用高温熔液法生长,其粉末倍频效应约为KDP(KH2PO4)的1.5倍,紫外截止边约为190nm;该锂铷钡铝硼氧氟非线性光学晶体机械硬度大,易于切割、抛光加工和保存,在制备倍频发生器、上频率转换器、下频率转换器或光参量振荡器等非线性光学器件中得到广泛应用。
954
0
本实用新型提供一种金属锂锂棒自动剪切装置。所述金属锂锂棒自动剪切装置包括:底板,所述底板上设置有密封机构、剪切机构和定位机构;所述密封机构包括挤压机、剪切箱、出棒管、支撑板、开口和密封板,所述挤压机固定安装在底板的顶部,所述剪切箱固定安装在底板的顶部,所述出棒管固定安装在挤压机的出料口,所述出棒管远离挤压机的一端与剪切箱的一侧外壁固定连接,所述支撑板固定安装在底板的顶部,所述开口开设在剪切箱的一侧外壁上,所述密封板铰接安装在开口的顶部内壁上。本实用新型提供的金属锂锂棒自动剪切装置可以简单有效的对金属锂锂棒进行定位,从而使剪切的金属锂锂棒规格一致,并避免锂棒与空气接触发生反应的优点。
743
0
本发明具体公开一种锂离子电池用磷酸亚铁锂正极废料的分离及再利用方法,其中分离方法包括下述步骤:首先将磷废料裁剪成圆片;然后浸没于蒸馏水中搅拌分离,得到分离混合物;最后过滤干燥,即可得到分离后的磷酸亚铁锂正极材料。再利用的方法步骤:首先将分离后得到的磷酸亚铁锂正极材料进行煅烧后得到磷酸亚铁锂晶体,然后将磷酸亚铁锂晶体、乙炔黑、聚甲基吡咯烷酮按照质量比为8∶1∶1进行混合研磨,涂覆在新鲜的铝箔上;最后将涂覆好的铝箔在真空干燥箱,用裁片机裁剪为正极片,即得磷酸亚铁锂正极极片。本发明有效地减少了资源的浪费和环境污染。
本发明涉及一种化合物氟硼酸锂钾和氟硼酸锂钾非线性光学晶体及制备方法和用途,该化合物化学式为Li3KB9O15F,分子量416.21,采用固相反应法合成化合物;所述氟硼酸锂钾非线性光学晶体,该晶体的化学式为Li3KB9O15F,分子量416.21,不具有对称中心,属三方晶系,空间群R3c,晶胞参数为a=11.974(4)Å,b=11.974(4)Å, c=15.998(11)Å, α=90(11)°, β=90°, γ=120°, Z=6, V=1986.4(17)Å3,采用高温熔液法生长晶体,该晶体倍频效应达到KDP(KH2PO4)的1倍,机械硬度大,易于加工和保存,在制备倍频发生器、上频率转换器、下频率转换器或光参量振荡器等非线性光学器件中可得到广泛应用。
1205
0
本发明涉及一种单晶富锂锰基正极材料的制备方法,在煅烧富锂锰基材料前驱体制备单晶富锂锰基正极材料的过程中,包含:S1:先对所述富锂锰基材料前驱体进行预烧,破碎处理得到被打散的富锂锰基材料前驱体的氧化物;S2:将该富锂锰基材料前驱体的氧化物与锂源混合均匀后进行烧结,得到富锂锰基材料前驱体的氧化物。更优选地,在预烧破碎后混锂的同时混入少量添加剂,混入添加剂可以诱导晶体生长和晶界发生融合,有利于形成单晶,改善晶体的结构。而预烧破碎可减小颗粒粒径至较理想范围,使被烧结物具有较好的动力学性能,在混锂和混添加剂时达到更佳混合均匀度,促进单晶的形成。借此制备方法,可获得单晶化程度高、颗粒粒径均匀的富锂锰基正极材料。
789
0
本发明涉及一种性能优异的新型锂离子电池负极材料钛酸铁锂/碳复合纳米管的应用研究。此材料以磺化聚合物纳米管为碳源和模板,硝酸铁为铁源,硝酸锂为锂源,通过饱和吸附和溶胶‑凝胶法获得前驱体;将前驱体在惰性气体下煅烧制得样品。本发明制备的钛酸铁锂/碳复合纳米管使超细的钛酸铁锂纳米颗粒嵌入一维的碳纳米管中,此结构可有效阻止钛酸铁锂纳米颗粒团聚,增加钛酸铁锂的导电性及锂离子扩散速率,同时具有一维材料的动力学优势。此材料作为锂离子电池负极材料具有较高的可逆容量、优异的倍率性能及循环稳定性,是一种非常有应用潜能的锂离子电池负极材料。
1127
0
本发明涉及一种碳包覆的磷酸铁锂/磷酸钒锂复合材料的制备方法,该方法是以磷酸铁、五氧化二钒为原料,将磷酸铁、五氧化二钒和锂盐化合物混合,加入螯合剂,进行研磨混合,在惰性气氛下热处理后加入碳源物质,加热升温,焙烧,降温至室温,即得到包覆碳的磷酸铁锂/磷酸钒锂复合材料。通过本发明所述方法获得的磷酸铁锂/磷酸钒锂复合材料,组装成测试电池在室温下以150mA/g电流放电比容量达到144mAh/g,-20℃时以30mA/g电流放电比容量为105mAh/g,晶型完整,颗粒形貌规则,表现出优异的常温和低温电化学性能。所述方法中的原料均是大宗化工原料,成本低廉,工艺路线简单、易实现工业化规模生产,有非常广阔的应用前景。
1122
0
LiNiPO4作为新兴的一种正极材料,具有潜在的高能密度、合成成本低、对环境友好等优点。目前主要通过制备工艺的改良来细化颗粒以及控制颗粒形貌合成纳米级LiNiPO4,碳包覆和金属掺杂改变了粒子的大小以及粒子间的紧密结合程度,减小了Li+的扩散路径,使锂离子的传导率提高,从而使材料的电化学性能有很大的改善。本发明选取合成原料包括锂盐(或氢氧化锂)、磷酸(磷酸铵盐、镍盐、导电碳黑(或乙炔黑或葡萄糖)。首先将原料采用球磨或搅拌处理后,在微波功率为300-2000W时,合成时间5-30min,可一步合成锂离子电池用磷酸镍锂/碳复合材料。
820
0
LiCoPO4作为新兴的一种正极材料,具有潜在的高能密度、合成成本低、对环境友好等优点。目前主要通过制备工艺的改良来细化颗粒以及控制颗粒形貌合成纳米级LiCoPO4,碳包覆和金属掺杂改变了粒子的大小以及粒子间的紧密结合程度,减小了Li+的扩散路径,使锂离子的传导率提高,从而使材料的电化学性能有很大的改善。本发明选取合成原料包括磷酸二氢锂(或采用磷酸二氢铵与氢氧化锂或锂盐,如醋酸锂等,或采用磷酸与氢氧化锂或锂盐为原料)、碱式碳酸钴、导电碳黑(或乙炔黑或碳纳米管或其他碳材料)。首先将原料采用球磨或搅拌处理后,在微波功率在300-2000W范围内,合成时间为5-30min,可快速合成锂离子电池用磷酸钴锂/碳复合材料。
1079
0
本发明公开了一种锂电池正极材料磷酸铁锂的回收方法,包括如下步骤:对废旧磷酸铁锂电池进行放电处理后拆除,得到正极片,并对正极片进行粉碎、筛选;粉碎、筛选后的粉粒加入酸液浸泡,使得粉粒中的锂、铁等金属以离子形式存在溶液中;浸泡后过滤,得到溶液a;将固定残渣加入酸溶液中进行浸泡、搅拌、过滤得到溶液b;加入碱液,搅拌直至不再有固定析出;析出固体后的溶液加入铝盐,析出氢氧化锂;将氢氧化锂粗产品与去离子水按0.01~0.1∶1的质量比溶解,经搅拌均匀、过滤,过滤分离后得滤液c;将滤液c加热浓缩、冷却、过滤,过滤分离出的沉淀物,经洗涤、干燥后得氢氧化锂产品。采用本方法回收锂电池正极材料,可以最大限度的回收锂源。
本发明涉及一种化合物硫硅锌锂和硫硅锌锂红外非线性光学晶体及制备方法和应用,该化合物的化学式为Li2ZnSiS4,分子量为235.58,为硫硅锌锂粉末纯样;该晶体的化学式为Li2ZnSiS4,分子量为235.58,非中心对称结构单晶,晶系为正交晶系,空间群为Pna2(1),晶胞参数a=12.892(2)Å,b=7.7739(12)Å,c=6.1451(10)Å,Z=4,单胞体积V=615.88(17)Å3。采用将单质锂、锌、单质硅和单质硫在真空条件下进行固相反应法和高温熔融法制备粉末纯样和单晶;本发明中所述的硫硅锌锂红外非线性光学晶体的纯样XRD图与理论值吻合;在2090nm的激光下,倍频效应是AgGaS2的1.1倍;获得毫米级单晶。
1143
0
本发明公开了种动力锂电池正极材料磷酸铁锂的处理方法,所述磷酸铁锂表面包覆有碳,其特征在于:包括如下步骤:S1.选取磷酸铁锂粒,所述颗粒大小选取3000‑3600目;S2.将选取好的磷酸铁锂粒放入磁选机,除去磷酸铁锂粒中的铁单质;S3.将磁选后的磷酸铁锂粒通入氟化银、氟化氢混合溶液中,置换出其中的活性金属杂质,同时将其中的金属氧化物酸化,然后进行过滤、干燥制得中间产物;S4.将S3中得到的中间产物通过色选机进行分离;S5.将S4中的得到的磷酸铁锂粒进行预烧结;S6.将S5预烧结后的磷酸铁锂粒与石墨烯在无氧化条件下进行烧结,冷却后得到碳包磷酸铁锂材料。减少磷酸铁锂正极材料的杂质含量,提高锂电池品质。
本发明涉及一种锂钾锶铝硼氧氟和锂钾锶铝硼氧氟非线性光学晶体及制备方法和用途,锂钾锶铝硼氧氟的化学式为K3Sr3Li2Al4B6O20F,分子量905.82,采用固相反应法制成,锂钾锶铝硼氧氟非线性光学晶体的化学式为K3Sr3Li2Al4B6O20F,分子量905.82,属三方晶系,空间群R32,晶胞参数为a=8.6035(5) Å,b=8.6035(5) Å,c=24.007(3)Å,V=1538.9(2)Å3,采用高温熔液法生长,其粉末倍频效应约为KDP(KH2PO4)的1.7倍,紫外截止边约为190nm;该锂钾锶铝硼氧氟非线性光学晶体机械硬度大,易于切割、抛光加工和保存,在制备倍频发生器、上频率转换器、下频率转换器或光参量振荡器等非线性光学器件中得到广泛应用。
1061
0
本发明提供了一种石膏增强剂——锂硅粉和含 有该石膏增强剂的抹灰石膏。使锂盐厂的废渣锂渣不仅作为填 料降低了成本, 可以作为各种石膏的增强剂, 提高石膏的强度, 如 作为β-半水石膏的增强剂, 使由β-半水石膏制备的抹灰石 膏的强度高于混合相抹灰石膏, 且工艺简单, 投资少、见效快, 同 时为锂盐厂解决废渣处理多了一条出路, 减少了对环境的污 染。以锂硅粉作为增强剂和填充料, 仅用半水膏就可配制抹灰石 膏, 而且施工效果好, 速度快。
940
0
本发明涉及一种锂离子电池正极材料镍锰酸锂的制备方法,该方法通过对传统固相法的改进,通过对锂离子正极材料镍锰酸锂的处理,从而得到一种区别于传统制备锂离子电池正极材料镍锰酸锂的制备方法,本发明所述方法制备的锂离子电池正极材料LiNixMn2-xO4(0.3
884
0
本发明涉及PPS行业氯化锂技术领域,是一种从含催化剂氯化锂的釜残浆液中回收氯化锂的方法;按下述步骤进行:第一步,将含催化剂氯化锂的釜残浆液加纯水稀释后,得到釜残稀释浆液;第二步,釜残稀释浆液经过滤后,得到一次滤液。本发明从含催化剂氯化锂的釜残浆液中回收氯化锂的方法较现有技术,大大提高了氯化锂的回收率,且得到的固体氯化锂的纯度高;同时本发明充分提取了釜残浆液中的氯化锂,在回收固体氯化锂过程中始终保持在水溶液中进行,回收温度适中,在回收氯化锂的过程中NMP不易分解,大大降低了NMP分解产生黑色浓烟而造成环境污染的问题。
中冶有色为您提供最新的新疆有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月15日 ~ 17日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日