本发明提供一种高炉‑转炉冶炼高钛、高铬型钒钛磁铁矿与铁钒钛铬资源增值化、节能减排的绿色清洁技术。本发明采用高钛、高铬型钒钛磁铁矿,鼓风中增加氢气,确保高炉正常稳定顺行的前提下,进一步增强还原能力,助力于减少CO2气体的排放,钒钛铬资源同步、高效利用。
1016
0
本发明提出了硫化银在碱性水浆中直接氢还原制备金属银粉的新方法。其主要特点在于水浆中加入适量的碱,以调整pH值12左右,同时要添加催化剂PdCl2和还原助剂ZnO,用ZnO中和还原过程产生的S2-,结合生成ZnS,使还原反应能够不断进行。控制还原温度、氢分压和搅拌速度等条件,硫化银中银的还原率可达95%以上。
954
0
一种微细粒金矿的选矿方法,它属于金矿选矿方法领域。本发明要解决的是细粒金矿回收效果不佳的问题。本发明原矿粉碎,矿石粉碎至粒径为15mm以下,然后进行粗磨,磨矿细度控制在粒径为0.074mm以下的占比为45~60wt%,然后用离心机粗选,得到离心粗精矿、离心尾矿,得到的离心粗精矿用矿泥摇床进行精选后,最终得到重选精矿、摇床尾矿,离心尾矿、摇床尾矿进行细磨,磨矿细度控制在粒径为0.074mm以下的占比为80~85wt%,细磨后的矿粉进行浮选粗选,得到浮选粗选精矿、浮选粗选尾矿,浮选粗选精矿进行浮选精选,得到最终浮选精矿;浮选粗选尾矿进行浮选扫选,得到最终尾矿。本发明用于微细粒原生金矿总回收率高。
本发明涉及一种由金属框架强化的复合物管,其被用于输送油和气、酸、碱产品、饮用水和工业用水,并且还用于输送腐蚀性和中性矿浆,例如在地下对于岩石进行滤出时使用。所要求保护的是:一种金属-聚合物强化管,包括焊接的金属框架和具有基于非晶相的分子结构的聚合物基体。金属-聚合物强化管通过如下方式制造:挤压模塑并同时将复合物熔体和强化金属框架送入到模具腔,随后对模塑成型的管的内表面和外表面进行集中冷却。本发明所解决的技术问题是,提高了金属-聚合物强化管的质量和径向的耐受力限制,提高了用于制造所述管的处理过程的生产率,以及还提高了由生产出的管所构造的管线的强度和技术效果。
923
0
本发明涉及一种半导体器件及其制备方法,所述方法包括:提供半导体衬底;在所述半导体衬底上依次形成阻挡层、低K材料层以及掩膜叠层;图案化所述阻挡层、低K材料层以及掩膜叠层,以形成沟槽,选用金属材料填充所述沟槽;去除部分所述金属材料,形成开口;在所述半导体衬底上沉积金属铝并进行氧化,以在所述开口中形成氧化铝材料层。本发明中所述Al2O3通过“沉积金属Al-氧化Al”的步骤形成,并经过多次循环所述步骤得到具有一定厚度的所述Al2O3材料层,所述沉积-热氧化的方法不含有等离子电荷,从而避免了等离子体损伤效应。而且所述Al2O3材料层原位形成于所述金属铜之上,还可以进一步提高该材料层上方的覆盖层与金属铜之间粘附性。
937
0
本发明涉及用于在对熔融锍进行造粒时浸出金属的方法,包括如下步骤:将熔融锍作为下落的流供给到造粒室(30)中,将液体射流喷洒在熔融锍的流上以雾化该锍,并且冷却如此形成的锍颗粒。该液体射流包含含有水和硫酸的酸溶液,使得当液体射流接触熔融锍时该酸溶液开始从该熔融锍浸出金属。可使来自造粒的产物溶液的一部分循环到液体射流以增加该溶液中的金属含量和降低其酸含量。
985
0
本发明涉及一种转筒混合萃取装置及萃取方法。所述装置包括固定的外筒及内筒;所述内筒可沿转轴旋转,外筒及内筒间的缝隙很小。设备运行时,外筒固定,内筒沿转轴方向旋转,二者相对运动。萃取时,首先开动基座内的电机,带动转轴旋转,内筒旋转;重相从重相入口进入,轻相从轻相入口进入;当内筒壁小孔和外筒壁小孔相对时,重相下降,轻相上升,二者均被剪切、破碎;孔不相对时,轻重相不能通过孔流动;一段时间后,被剪切后的轻相液滴与重相液滴完全混合,进行萃取。该萃取装置特别适用于悬殊相比易乳化体系,可在两相界面清晰的情况下实现短时间均匀混合,完成萃取。
920
0
本发明涉及一种基于原地溶浸低含铜矿化体生产电积铜的方法,所述低含铜矿化体的矿区品位Cu:0.119‑0.182%,米百分率3.29‑55.08%m。本发明首次利用低含铜矿化体注入生物酸溶液浸出铜,经坑道和钻孔集液,萃取—反萃—电积生产阴极铜。与现有技术相比,开拓了低含铜矿化体资源渠道,拓展了七倍的铜资源量,具备中型规模,融采选冶于一体,不需采出矿石,无环境污染,节省投资、成本,具有极好开发前景,节能减排。
1263
0
本发明涉及一种全交换容量大的弱碱性苯乙烯系离子交换树脂及其制备方法和应用。本发明以苯乙烯、二乙烯基苯为反应单体,在水中通过悬浮聚合反应而制得中间产品白球。再将悬浮聚合反应所得中间产物白球和氯甲醚加入到反应釜中,反应得到功能基改性中间产物氯球。将氯球和二甲胺水溶液加入到反应釜中,在常压条件下反应制得新弱碱性苯乙烯离子交换树脂。本发明制备得到的弱碱性苯乙烯离子交换树脂,合成步骤简单,反应条件温和。该树脂具有再生效率高、交换容量大、抗污染能力强、机械强度好的优点。
959
0
本发明公开了一种油水混合物快速分离装置,包括油水分离器,油水分离器包括:顶盖、罐体、压紧装置、压力表、挤压板、纤维层、承压板、压力传感器、接收槽、溢流板、筛板、水相调节盒;顶盖设置在罐体的顶部,压力传感器设置在罐体的外壁上,压力表设置在顶盖上部,顶盖上设置有混合相入口;承压板固定在罐体的内壁上,承压板上开有通孔;纤维层放置在承压板的上部,挤压板放置在纤维层的上部,挤压板上开有通孔,压力传感器的探头位于承压板上;罐体底部的两侧侧壁上设置有有机相出口和水相出口。本发明还公开了一种油水混合物快速分离方法。本发明中油水混合物快速通过由纤维物质形成的填充层,实现油水混合物快速分离。
1106
0
本发明公布了一种连续化碳热法生产稀土硅铁合金的方法,其针对现有碳热还原工艺制备稀土铁合金在连续化生产方面的不足以及产品品质提升方面的难题,本发明方案的核心内容是一种基于核‑壳多层结构的配料以及配料和冶炼工艺方法,通过矿热炉进行一步法冶炼可以有效地避免炉底上涨的情况,从而实现连续化作业,并获得高品质的稀土硅铁合金产品,同时冶炼操作条件类似硅铁合金,工作面的操作流程变得更为简便,能耗水平明显降低。
765
0
本发明公开一种废弃锂电池正极材料的再生方法,包括以下步骤:S1、将正极活性材料、具有螯合作用的有机酸和过氧化氢混合反应后,取液相,得到浸出液;S2、加热浸出液,生成凝胶螯合物;S3、将凝胶螯合物进行烧结。本发明再生方法在有机酸和过氧化氢的作用下,正极活性材料中有价金属以离子形式进入液相;有机酸分子可与浸出液中金属离子发生螯合反应,生成凝胶螯合物析出,最后经分段加热,分解多余的有机酸,得到正极材料。本发明既避免了不必要的分离提纯步骤,同时减少了固废和液废的排放,缩短了工艺流程,具有更高的经济效益,对节能减排和环境保护具有重要意义。
838
0
本发明提供了一种多孔铅阳极的制备方法及其应用,所述多孔铅合金阳极具有三维通孔结构,孔隙率大于50%。所述多孔铅合金阳极制备方法采用泡沫金属作为造孔基体并配合特有装置的渗流法,包括泡沫金属表面预处理、熔融铅合金加压渗流及泡沫金属的溶出等步骤。本发明制备的多孔铅合金阳极具有重量轻、抗蠕变、密度低、阳极过电位低、铅合金用量少以及操作方便、泡沫金属廉价易得等优点。此外,本发明的制备方法可针对不同有色金属电积来开发相应的阳极,有利于实现大规模工业化。
784
0
一种从镍红土矿富集镍钴的氯化离析方法,包括矿料干燥处理;配、混料和造球:在经处理的镍红土矿料中配入氯化剂和还原剂,混合造球;氯化剂加入量为矿料质量的5~10%,还原剂加入量为矿料质量的3~6%;矿料球预加热升温,升温温度以保障矿料球蓄热而不发生化学反应为限;将经得到的灼热混合矿料球投入氯化离析反应器,进行镍和钴的氯化离析焙烧;焙烧温度900~1100℃;磁选富集镍和钴:将焙烧后得到的焙球直接水淬、湿式细磨;再采用粗选-精选-扫选联合磁选富集镍和钴,粗选、精选、扫选的磁场强度分别为2100~2500高斯、1000~1500高斯、3100~3500高斯;扫选中矿返回粗选;窑气处理和回收氯化剂。?
842
0
本发明公开了一种从废旧锂离子电池回收锂的方法,包括如下步骤:S1、电池粉的制取:先将废旧锂电池进行集中收集,再将收集的废旧锂电池用破碎机破成小块,然后用磁选机选出金属铁和不锈钢壳,同时使用风选法选出塑料,并筛选分离出金属铜和金属铝,可得到含有铜锰钴镍锂氧化物的电池粉,涉及废旧锂离子电池回收技术领域。该从废旧锂离子电池回收锂的方法,使电池粉溶解的更加充分,大大提高了溶解效率,无需人们花费大量的时间来对电池粉和强酸的混合液进行搅拌,很好的减轻了人们的劳动强度,提高了人们的工作效率,实现了既快速又方便的对电池粉和强酸进行溶解,从而大大方便了人们的废旧电池锂离子提取工作。
800
0
本发明涉及一种粉煤灰酸浸提钒中回收十二水硫酸铝钾工艺方法。包括以下步骤:粉煤灰采用硫酸或硫酸和助浸剂搅拌浸出,然后固液分离;洗涤浸出尾渣,洗水逆流返回上述搅拌浸出;浸出液加入冷凝搅拌结晶,得到十二水硫酸铝钾;对结晶尾液进行中和、还原、萃取提钒;对萃取后萃余液进行氧化、中和除杂,然后固液分离,得到萃余液中和渣和再生水,再生水返回浸出工序。本发明在回收钒的同时,得到高产量高品质的副产品十二水硫酸铝钾;浸出液中杂质铝的结晶析出,确保粉煤灰提钒工艺流程畅通。本方法减少除杂药剂用量,运行成本低,对环境污染少。
1014
0
本发明涉及一种不锈钢合金,特别是一种含铁素体-奥氏体基体且具有良好抗腐蚀性能、结构稳定性和热加工性的双相不锈钢合金,本发明所述双相不锈钢合金包含(重量百分比)至多0.03%的C,至多0.5%的Si,24.0-30.0%的Cr,4.9-10.0%的Ni,3.0-5.0%的Mo,0.28-0.5%的N,0-3.0%Mn,0-0.0030%的B,最多0.010%的S,0-0.03%的Al,0-0.010%的Ca,0-3.0%的W,0-2.0%的Cu,0-3.5%的Co,0-0.3%的Ru,平衡量的Fe以及不可避免的杂质,并且铁素体体积百分含量为40-65%,铁素体相和奥氏体相的PRE值在46-50之间,奥氏体相的PRE(W)值与铁素体相的PRE(W)值之间比值的优选关系为0.90-1.15,优选为0.9-1.05。
1042
0
本发明涉及一种气升式空气搅拌多次层循环萃取装置及方法。所述装置包括外管、外中心管及内中心管,所述外管与外中心管之间安装有内管。所述方法首先在萃取装置中加入待萃取混合液,然后加入轻相;开始通气后,内中心管内产生气泡,两中心管间进行轻相被吸下的小循环,同时轻相被破碎;随后内外管内液体陆续开始参与循环,轻相被进一步破碎;一段时间后,轻相液滴与混合液相完全混合,形成稳定多次层循环。本发明特别适用于油水相比小于1∶1000的悬殊相比易乳化体系将轻相均匀地分散在重相的过程中,可在两相界面清晰的情况下连续操作,避免乳化现象,设备投资小,易操作,动力消耗低,对溶液的剪切力小,有利于保持生物大分子的活性。
765
0
本申请公开了一种磷酸铁锂正极片的回收方法及其应用。本申请回收方法包括,将废旧磷酸铁锂正极片放入过氧化氢和水的混合溶液中,采用超声磁场震荡,使正极材料与箔片分离,获得含磷酸铁锂的黑色混合溶液;对黑色混合溶液过滤,获得磷酸铁锂膏体;用去离子水洗涤磷酸铁锂膏体,干燥,获得贫锂的磷酸铁锂,将其加入氢氧化锂溶液中,超声条件下60℃~120℃恒温0.5h~6h;反应结束后,过滤、洗涤、干燥,获得修复的磷酸铁锂。本申请回收方法,操作简单、过程易控制、能耗低、环境友好,不产生二次污染物;不仅能避免大量废旧电池浪费,而且能缓解其带来的环境污染压力;回收的磷酸铁锂可直接作为正极材料使用,并具有良好的容量保持率。
810
0
本发明涉及一种从高硫含铜氧硫混合型矿石中提铜工艺,按如下步骤进行:A.水浸可溶铜,将细碎原矿石与水给入搅拌槽中搅拌至水溶铜基本溶解,固液分离得到水浸可溶铜贵液和分离浸渣;B.浸渣分步优先浮选铜矿,向分离浸渣加入石灰磨矿,添加Z-200、2#油用量1搅拌调浆进行铜粗选Ⅰ得到铜粗精矿Ⅰ和铜粗选尾矿Ⅰ,再将进行铜精选Ⅰ得到铜精矿Ⅰ,进行铜粗选Ⅱ得到铜粗精矿Ⅱ和铜粗选尾矿Ⅱ,分别将铜粗精矿Ⅱ进行铜精选Ⅱ和铜精选Ⅲ,得到铜精矿Ⅱ,向铜粗选尾矿Ⅱ添加Z-200、2#油进行铜扫选Ⅰ和铜扫选Ⅱ得到选铜尾矿和铜扫选Ⅱ精矿;C.选铜尾矿浮选硫,先添加丁黄药、2#油搅拌调浆进行硫粗选,再进行硫精选,得到硫精矿和硫精选尾矿,硫扫选分出硫扫选精矿和最终尾矿,具有药剂耗量少、单位成本低、综合回收率高、对环境友好等优点。
1246
0
本发明提供一种生成高品质氧化铁粉和高浓度盐酸的系统,包括焙烧炉系统,焙烧炉系统包括焙烧炉,焙烧炉顶部设有酸枪,文丘里预浓缩器的出液管道与焙烧炉顶部的酸枪连通,焙烧炉和文丘里预浓缩器连通的烟气管道上设有双旋风除尘器,文丘里预浓缩器与吸收塔连通的烟气管路上设有至少一级烟气冷却器,所述吸收塔通过烟气管道依次与文丘里洗涤塔和洗涤塔连通,文丘里预浓缩器进的物料为经过萃取或者提纯后的纯度非常高的FeCl3溶液。本发明还提供一种生成高品质氧化铁粉和高浓度盐酸的工艺方法。
969
0
本发明公开了一种处理含铬碱性水溶液的方法,其方法步骤为:(1)将含铬碱性水溶液与钡沉淀剂按摩尔比Cr/Ba=0.8~2进行混合反应,然后液固分离,得到含有铬酸钡的沉淀和含氢氧化钠溶液;(2)所述铬酸钡沉淀按摩尔比Ba/Pb=1 : 1~2加入Pb(NO3)2溶液进行反应,经液固分离得到铬酸铅沉淀和含硝酸钡溶液;(3)所述含硝酸钡溶液经蒸发、高温煅烧得到BaO。本处理方法操作简单,不需要调节溶液的酸碱度,可回收碱性溶液中的碱,可有效处理含铬碱性溶液,尤其是高碱条件下的含铬溶液;具有生产成本低、经济效益好的特点。
1049
0
本发明公开多元复合超临界二氧化碳体系资源化废旧钴酸锂电池的方法,将废弃钴酸锂电池进行放电处理后拆解分离出正负极片;采用超临界二氧化碳结合辅溶剂二甲亚砜从正负极片中提取出PVDF粘合剂后,分别将正极材料与铝箔,负极材料与铜箔分离出来;之后采用超临界二氧化碳/水体系选择性浸取回收正极材料中贵金属锂,之后过滤得到富含Li的滤液并进行高温浓缩和高温过滤得到碳酸锂产物;采用超临界二氧化碳/低共熔溶剂体系浸取滤渣中金属Co并添加还原剂加强Co的浸取;之后添加沉淀剂过滤得到氢氧化钴或碳酸钴或草酸钴产物。该方法使用可回收和再利用的二氧化碳体系,回收方法全程无毒无污染;操作简单且回收产物纯度高,有望于大型工业化应用。
1053
0
本发明涉及金属离子萃取分离技术领域,具体地,本发明涉及一种中相富集铁的液-液-液三相萃取分离方法。所述方法包括以下步骤:1)将铁离子的水溶液中的Fe3+铁离子还原为Fe2+;2)向步骤1)得到的溶液中依次加入邻菲哕啉、水溶性高分子聚合物和无机强电解质盐,充分混匀,得到混合溶液,其中邻菲哕啉与Fe2+的摩尔比为3~8∶1;3)将步骤2)得到的混合溶液的pH调至1.0~6.0,然后加入与水不互溶的有机试剂,充分混合、静置、离心,得到上、中、下三层共存的三相体系,邻菲哕啉与铁离子的配合物进入水溶性高分子聚合物所在的中层水相中,从而实现中相富集铁的液-液-液三相萃取和分离。本发明方法实现目标金属与铁的高度分离。
788
0
冶金除铁槽,包括槽体以及槽体内部的搅拌机构和槽体上部的驱动机构,其特征在于所述槽体为圆桶状,槽体侧壁设有出料口和进料口,出料口内测连接有提料管,搅拌作业时压缩空气通过旋转接头进入搅拌轴中间的空腔,然后通过轴端通气帽进入矿浆溶液中,在斜叶圆盘涡轮搅拌器的作用下在矿浆溶液中迅速扩散,斜叶圆盘涡轮搅拌器兼有径向和轴向分流,在其作用下,混合了气体的矿浆以圆盘为界,形成上下两个循环流,变截面旋桨式搅拌器为轴流型搅拌器,通过与斜叶圆盘涡轮搅拌器配合作用在搅拌槽内形成接力循环的流体场,在空气中氧的作用下,矿浆溶液中的二价铁离子Fe2+不断地被氧化为三价铁离子Fe3+,以Fe(HO)3的形式析出,最终达到除铁的效果。
1120
0
本发明公开了一种锂电池回收方法和设备。此锂电池回收方法包括:去除废弃锂电池的外壳,得到电池卷芯;破碎处理所述电池卷芯,得到电极混合碎片;检测所述电极混合碎片;根据检测结果将所述电极混合碎片中的正极碎片和负极碎片分离;分别处理所述正极碎片以及所述负极碎片,回收正极材料、正极衬底金属、负极材料以及负极衬底金属。本发明实施例提供的技术方案,通过将正极碎片和负极碎片分离,各自分开处理,分别回收,可对锂电池的正极和负极的组成材料进行有效分离和分别回收,有利于提高废旧锂电池的资源化程度。
1137
0
本申请涉及从金属硫化物中回收金属的方法,该方法包括使金属硫化物与含有硫酸铁和具有硫代羰基官能团的试剂的酸性硫酸盐溶液接触,以生产含有金属离子的富液,其中,相对于不含所述试剂的酸性硫酸盐溶液,所述酸性硫酸盐溶液中的试剂的浓度足以提高金属离子提取的速率。
本发明公开了一种Cu(Ⅱ)-Me(Ⅱ)-Cl(Me为Co、Ni、Mn和Zn中的1种及以上)溶液体系中分离Cu(Ⅱ)和Me(Ⅱ)的方法。根据Cu(Ⅱ)-Me(Ⅱ)-Cl溶液体系中Cu(Ⅱ)的沉淀特性,通过控制溶液的pH值,采用一种复合成分的选择性沉淀剂,将Cu(Ⅱ)优先从Cu(Ⅱ)-Me(Ⅱ)-Cl溶液体系中沉淀出来,实现Cu(Ⅱ)与Me(Ⅱ)的有效分离。
956
0
本发明公开了一种从废旧锂电池钴酸锂正极材料中回收有价金属的方法,该方法包括以下步骤:1)将废旧钴酸锂正极材料加入至碱液中进行碱浸除铝;2)将上述除铝后的钴酸锂正极材料加入至水中进行磁选除铁;3)对上述除铁后的钴酸锂正极材料进行高温氢还原;4)将上述还原后的钴酸锂正极材料加入至水中进行水浸,获得水浸出液和水浸出渣;5)对上述水浸出液进行碱沉淀,获得Li2CO3沉淀;6)对上述水浸出渣进行二次高温氢还原处理,获得钴粉。本发明回收方法高效易行且绿色环保,具有产业化的潜力;此外,通过采用本发明方法回收有价金属锂、钴的过程中,锂的浸出率高,回收得到的Li2CO3和Co粉的杂质少,纯度高。
北方有色为您提供最新的有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!