867
0
一种钴镧共掺杂可见光响应BiVO4光电极及其制备方法,属于纳米功能材料领域。步骤:1)在溶解有碘化钾、硝酸铋的水溶液中加入对苯醌、乙醇充分搅拌;2)以上述溶液为电解液,电沉积5~15min,可在导电衬底上沉积得到铋氧碘(BiOI)薄膜;3)再将乙酰丙酮氧钒溶于二甲基亚砜中,加入适量的钴源、镧源搅拌混合均匀;4)移取上述混合有钒源、钴源和镧源的二甲基亚砜溶液均匀涂覆于铋氧碘(BiOI)薄膜上;5)转移至马弗炉中以400‑550℃温度煅烧1~2h;6)取出样品并将其浸泡于氢氧化钠溶液中30‑60min,清洗、干燥,得到钴镧共掺钒酸铋(Co/La‑BiVO4)纳米多孔电极。优点:钴镧元素共掺能有效增强BiVO4薄膜的可见光响应,得到了更佳的光电化学制氢性能。
本发明以1,1‑二溴‑1‑烯烃类化合物与卤代苯衍生物为原料,在碱和钯催化剂的作用下发生消除‑交叉偶联反应合成内炔类化合物。内炔类化合物是非常重要的化学原料及中间体,广泛存在于天然化合物、药物分子、生物活性物质、有机功能材料当中。本发明具有原料成本低、反应收率高、操作简单和催化剂可回收等优点,具有非常好的应用前景。
980
0
一种均相阴离子交换膜及其制备方法,属于高效水处理材料技术领域。该均相阴离子交换膜的制备方法,包括以下步骤:1)将膜基材与阴离子交换功能材料溶解于碳纳米管的NMP溶液中,形成膜液;2)将膜液超声脱泡后涂膜,干燥,得到含有碳纳米管的连续基膜;3)将基膜浸润在引发剂溶液中,通过高温聚合,将浸润好的基膜制成均相阴离子交换膜。本发明能够有效提高阴离子交换膜的导电性,增加含水量,同时提高阴离子交换膜的机械强度。
1143
0
本发明公开了一种冻土三维导热系数测定装置和方法,该装置由温控箱、两体式土样室、加压板组成;加压板通过加压杆与多功能材料实验机接触;两体式土样室由主室和直角形套壁组成;直角形套壁与主室通过套环和螺栓连接;实施方法:首先在主室内依次叠加1~7#土样、然后分别在5#、7#和2#土样与8#土样接触面上布置薄片式导热系数探头,最后叠加8#土样,并依次安设直角形套壁、螺栓、套环和加压板。通过温控箱控制冻土温度和冻融循环过程、通过多功能材料实验机调节冻土所受荷载范围,实现多因素及其耦合作用下冻土三维导热系数的准确测定,并进一步通过垂直加载方向上的导热系数和荷载间的关系推算冻土中水平方向上受到的静止土压力。
908
0
本发明公开了一种工艺易控的高分子类固固相变材料及化学制备方法,属于材料的化学合成技术领域。选择聚乙二醇作为主要的蓄能功能材料、聚乙二醇单甲醚作为辅助的蓄能功能材料协同使用,以甲苯-2,4-二异氰酸酯为交联剂,顺丁烯二酸二丁基锡为催化剂,丙酮、二甲基亚砜作为溶剂,与聚对苯二甲酸乙二酯化学合成制备而成。聚乙二醇单甲醚的加入使聚乙二醇和聚对苯二甲酸乙二酯之间的反应速度和程度减低,易于控制,化学合成的聚乙二醇单甲醚+聚乙二醇/聚对苯二甲酸乙二酯固固相变材料相变焓提高,整个工艺具有良好的工业化应用前景。
1239
0
本发明公开了一种功能化抗菌吸湿复合材料及其制备方法,该复合材料由以下重量百分比的组分组成:11%~14%基体材料,81.7%~87.56%改性材料,0.44%~4.3%功能材料;经浸渍、共混、干燥、去壳等工艺制得。本发明结合了无机吸湿材料的高吸湿速率、高吸水树脂的大吸湿容量和功能材料具有抗菌性能的优点,得到了一种综合吸湿性能优异且具有抗菌效果的复合吸湿材料。本发明制得的复合吸湿材料为直径在0.75~0.9cm的均匀白色球体,密度为0.4~0.7g/cm3,吸湿速率为130~280mg/(g·h),较高吸水树脂增长9~20倍,具有较好的综合吸湿性能。本发明工艺简单便于操作,原料低廉易得,容易实现,同时功能材料氯化锂、溴化锂的加入使得本发明产品具有一定的杀菌性能。
784
0
本发明公开了一种水溶性功能材料制备用多种类原料分散下料一体化装置,包括有下釜体、搅拌轴、上釜体、等量下料装置、下料隔热装置和分散上方输送装置,所述下釜体四周缠绕安装有加热管,所述下釜体底部焊接固定有支撑架,所述搅拌轴两侧通过连接杆固定有刮板,且搅拌轴一端贯穿下釜体与搅拌电机固定连接,所述上釜体下方两侧贯穿开设有通孔组,所述上釜体底部与另一法兰连接盘组固定连接,且上釜体通过法兰连接盘组与下釜体固定连接,该一种水溶性功能材料制备用多种类原料分散下料一体化装置,设置有刮板,通过刮板不仅起到固定连接的效果,并且通过刮板从而起到受力带动和受力旋转相对运动的效果。
1149
0
本发明公开一种高性能除Cr(VI)煤基功能材料的制备方法及使用方法,适用于含Cr(VI)污水处理。首先混合原料和过硫酸盐,然后将原料和过硫酸盐混合物加入纯水充分搅拌混合,之后对混合后的物料进行水热炭化反应,反应结束后自然冷却至室温,对冷却的物料进行抽滤,并利用超纯水去除物料中的硫酸根离子,最后将去除硫酸根离子的物料烘干碾磨得到高性能除Cr(VI)煤基功能材料;使用时将高性能除Cr(VI)煤基功能材料投入含Cr(VI)污水搅拌即可。其原料价廉易得,反应条件简单、适应范围广、反应速度快。
1285
0
本方法是利用硫酸钛白法的废硫酸或工业硫酸来浸出破碎好的废干电池,通过硫化使汞以硫化汞的形态集中在浸出滤渣中加以处理,滤液通过氧化加热、置换、水解工序净化后,用碳酸盐溶液中和,沉淀经洗涤烘干得到用于制备锰锌铁氧体颗粒料的混合碳酸盐,中和后的母液经浓缩结晶生产硫酸铵。在工艺中补加一定量的铁、锰元素,将得到的混合碳酸盐再经预烧、制粒即可得到锰锌铁氧体颗粒料产品;加入的铁剂也可以是从废干电池中磁选出的铁皮,分出铁皮的废干电池去生产混合碳酸盐。本方法是以废治废,除汞简单有效,可有效利用各有价元素,在整个工艺中不产生新的“三废”污染,因此有很高的经济效益和社会效益。
1175
0
本发明公开了一种防水用熔融石英砂陶瓷的制备方法,包括步骤A、丙烯酰胺水溶液、N,N‑亚甲基双丙烯酰胺、焦磷酸钠混合搅拌得到前驱体溶液;B、将高纯度熔融石英砂原料均匀混合后,加入添加剂、粘接剂后球磨制成料浆;C、向步骤B中制备的料浆中加入调节剂,调节步骤B中料浆pH,再次球磨备熔融石英料浆;D、将步骤C中制备的熔融石英料浆、烧结助剂、前驱体溶液混合后,加入引发剂,制备得到成型料浆;E、将步骤D中成型料浆注入动态注凝成型装置模具中,加热固化后脱模,得到石英砂陶瓷胚体;F、将步骤E中制备的石英陶瓷胚体固化,冷却得到陶瓷生胚;G、将步骤F中制备的陶瓷生胚烧至成型,保温即制成所需的防水用熔融石英砂陶瓷。
884
0
本发明公开了一种制备取向长度L≥60mm的钕铁硼永磁材料的工艺,在压制时采用的是低压力压制,制备取向方向减半甚至更少的磁体,然后采用两块或多块压坯在取向方向上扫净光滑后紧密叠加在一起后真空包装并冷等静压,最后放入烧结炉进行烧结合金化,使多块磁体的光滑接触面充分弥合在一起形成一个整体产品,使剩磁、内禀和磁能积等磁性能都会有所提高。
1241
0
一种大尺寸YAG透明陶瓷薄片的制备方法,包括如下步骤:将Y2O3粉体和Al2O3粉体、聚醚酰亚胺、烧结助剂置于球磨罐内,经过球磨、干燥、过筛后煅烧得到水基流延成型用YAG粉体;将聚丙烯酸、氢氧化铵与去离子水混合配制成预混液;将YAG粉体加入到预混液中进行第一次球磨,再加入增塑剂、粘结剂、聚丙二醇后进行第二次球磨配制成水基YAG陶瓷浆料,除泡后流延成型,干燥后脱模得到流延膜,对流延膜进行裁剪叠片、冷等静压、温等静压后得到素坯;将素坯在空气气氛下900~1100℃煅烧排胶10~15h,再置于真空炉中烧结、马弗炉退火得YAG透明陶瓷薄片。该方法有效改善大尺寸陶瓷薄片易形变、干燥易产生裂纹等缺陷。
1030
0
本发明公开了一种车用贴片式二极管封装结构及方法,包括引线框架、焊片、二极管芯片和连接片,用焊片依次固定引线框架,二极管芯片和连接片,框架基板设有闭环的凹槽;框架基板延伸出曲臂,曲臂连接框架引脚,框架引脚设有焊接座,焊接座上设有限位装置;连接引脚置于限位装置中通过焊片固定在焊接座上;设置环氧塑封体封装凹槽、二极管芯片、连接片和焊接座。通过设置限位装置使连接片与框架引脚定位准确,焊接工序一次即可完成;通过设置凹槽增加贴片式二极管的防水功能。
991
0
本发明公开了一种基于多功能荧光陶瓷的绿光光源,包括激光器,散热基底,透镜,光纤,荧光陶瓷,外壳。激光器发射的蓝光经透镜耦合进入光纤,蓝光经光纤传输到荧光陶瓷的表面,激发荧光陶瓷变成绿光,随后经荧光陶瓷的整形输出高亮度绿光光源。本发明的荧光陶瓷为平凸透镜形状,集发光和整形为一体,节省照明元件,亮度更高。
961
0
本发明公开了一种新型铝合金的配方,按重量份数由以下成分组成:铝粉70‑80份、猛粉10‑15份、铜粉5‑10份、铬粉3‑5份、铁粉30‑40份、镁粉2‑5份、硬脂酸铝0.5‑1份、表面活性剂4‑6份和聚四氟乙烯3‑4份,所述上述金属元素纯度为99.99%。用本发明的配方和生产方式生产出来的铝合金,在保留了铝元素原有的物理特性的情况下,增强了铝合金的硬度与韧性,避免了铝合金在使用过程中或使用一段时间后发生断裂的现象,同时提高了铝合金抗腐蚀的能力,延长了铝合金的使用寿命,扩大了铝合金的应用范围。本发明缩短了铝合金的生产过程,提高了企业的生产效率,节约了企业的生产成本,有利于企业经济效益的提高。
1097
0
本发明属于新材料领域,具体涉及一种AZO靶材的制备方法,包括:通过AZO原料制备AZO喷涂材料;以及将AZO喷涂材料通过喷涂方式制成AZO靶材。本申请的制备方法通过制备AZO喷涂材料和喷涂工艺两步制成AZO靶材,提高了靶材的均匀性,也简化了靶材的生产工艺,提高了生产效率,节约了生产成本。
860
0
一种高亮度高热稳定性黄绿光荧光陶瓷及其制备方法,其化学式为(Lu0.8‑x‑yLixCeyGd0.2)3Al5O12,其中x、y分别为Li+和Ce3+掺杂Lu3+位的摩尔比,0.001≤x≤0.008,0.005≤y≤0.015。制备方法:称取Lu2O3、Gd2O3、Al2O3、CeO2和Li2O作为原料粉体,将原料粉体、MgO和无水乙醇混合球磨干燥后过筛得到混合粉体,再经过第一次煅烧后放入模具中经干压成型得到素坯;将素坯置于真空炉中烧结后并在空气中退火、双面抛光后得到荧光陶瓷。本发明制备得到的陶瓷热稳定性高、热导率高,该方法使用原料种类少,烧结温度低,能有效实现陶瓷发光亮度的提升。
1168
0
本发明公开了一种具有包芯结构的透明陶瓷光纤的制备方法,步骤是:分别制备适用于芯层的陶瓷膏体Re:M与适用于包覆层的陶瓷膏体N;将Re:M、N分别转移至储液器A和储液器B中,通过分流控压阀A调整输入储液器A的气压P1,通过分流控压阀B调整输入储液器B的气压P2,从而精确控制两种陶瓷膏体Re:M、N进入喷嘴腔体的速率;挤出后的陶瓷复合膏体通过温度控制装置促进陶瓷膏体内部实现快速固化成型;将成型后的透明陶瓷光纤丝进行低温脱脂、高温固相反应烧结及后处理,获得透明陶瓷光纤材料。本发明采用陶瓷膏体挤出工艺再结合高温固相反应烧结方法制备出高光学质量的透明陶瓷光纤,该材料具有良好的导热性能,操作简单,条件可控,易于推广。
1179
0
本发明公开了一种永磁材料及其制备方法。该永磁材料由材料A与材料B混合烧结而成,材料A与材料B的重量比为5:100‑120;材料A由物质Al[Si4O10](OH)8、物质K2O·Al2O3·6SiO2、锌氧化物和四氧化三铁组成,它们之间的重量比例为1:0.5‑0.8:0.1:0.5;材料B中各成分的重量百分含量为:B 3‑6%,Nd 22‑26%,Bi 1.2‑1.9%,Zr 0.03‑0.09%,Lu 3‑8%,Ho 0.08‑0.12%,In 0.1‑0.5%,P 0.08‑0.15%,其余为Fe。本发明制备的永磁材料具有较高的磁性能,且制备工艺简便,制备所用原料成本较低,生产的合金具有良好的性能,便于工业化生产。另外制备过种中材料经过适当处理,保证了材料成分、组织和性能的均匀性,保证了材料的质量。本发明制备的永磁材料适用于电器行业,具有良好的应用前景。
1247
0
本发明涉及一种用于陶瓷辊的环保高新粉体材料,是由以下重量份的原料制备而成:高纯熔融石英粉100份、铝掺杂的氧化锌20‑50份、镧锶锰氧化物25‑35份、二硼化钛10‑18份、碳化硼20‑30份、碳黑5‑8份、氧化铝8‑15份。其制备方法为:按照配方重量份称取原料放入行星球磨机中球磨4‑5h,烘干后得到混合粉料;然后放入等离子活化煅烧炉中进行煅烧1‑2h;即得到用于陶瓷辊的环保高新粉体材料,本发明的粉体材料是新型功能陶瓷粉体材料,可以作为介电和压电的复相石英陶瓷辊的粉体材料;本发明的复相石英陶瓷辊具有耐高温、耐水气、介电性能和压电性能好、相结构稳定、均匀性好、致密性高、性能稳定优越,极具生产效益和实用价值。
1085
0
本发明公开一种制备永磁材料径向柱的模具及其使用方法,属于磁性材料制造技术领域,包括主模板Ⅱ(201)、副模板Ⅱ(207)、上压头Ⅱ、下压头Ⅱ,还包括中间块体(206),中间块体的中央设置有数量不少于两个的圆型腔(205),中间块体的两端设置有凸起体(204),所述的主模板Ⅱ与副模板Ⅱ上对称的开有U型槽(208),凸起体分别安装在U型槽内,上压头Ⅱ、下压头Ⅱ分别为直径略小于圆型腔的实心圆柱体。有益效果是:本发明的模具压制的磁柱表面光滑,不需磨加工除棱,同时磁柱表面无暗裂纹;制成电机声音小;制备相同直径、不同长度的磁柱方便;压制过程无需等静压处理;压制过程无需重复拆装模具,加工效率高。
1196
0
本发明公开了一种复相荧光陶瓷材料及其制备方法。该复相荧光陶瓷材料,其化学通式为Al2O3‑(Y1‑xCex)3(Al1‑ySiy)5(O1‑yNy)12,其中,0.001≤x≤0.01,0<y<0.3,Al2O3与(Y1‑xCex)3(Al1‑ySiy)5(O1‑yNy)12的质量比为0.5~50:50~99.5。按质量比与化学计量比称量Al2O3,Y2O3,CeO2和a‑Si3N4原料粉体,加入烧结助剂和溶剂;经过球磨、干燥、过筛得混合粉体;再进行干压和冷等静压,得到素坯;经过高温烧结和双面抛光,即得Al2O3‑(Y1‑xCex)3(Al1‑ySiy)5(O1‑yNy)12复相荧光陶瓷。
1056
0
本发明属于复合材料制备技术领域,提供了一种聚四氟乙烯复合摩擦材料及其制备方法,该复合摩擦材料由聚四氟乙烯(PTFE)、聚对羟基苯甲酸苯酯(POB)、六方氮化硼(HBN)复合而成,聚四氟乙烯(PTFE)质量比为60%~75%,聚对羟基苯甲酸苯酯(POB)质量比为20%,六方氮化硼(HBN)质量比为5%~20%,该复合摩擦材料生产工艺简单,控制方便,制备成本低,有效地提高了聚四氟乙烯复合材料的机械性能和承载能力,摩擦系数较低,同时提升了复合材料的压缩强度、球压痕硬度和耐磨性,可应用于承载力要求高、无油润滑的工程和运输领域,具有较强的推广与应用价值。
1144
0
一种多孔超高分子量聚乙烯与仿生软骨结合的材料及制备工艺,属于仿生植入材料及制备工艺,材料包括:重铬酸氧化溶液、仿生软骨材料、接枝溶液和硬面基底;所述的重铬酸氧化溶液:重铬酸钾20%,浓硫酸80%;所述的仿生软骨材料:聚乙烯醇15%、去离子水82%、纳米羟基磷灰石3%;所述的接枝溶液:聚乙烯醇7%、浓硫酸1.5%、去离子水91.5%;所述的硬面基底:超高分子量聚乙烯,粉体NaCl;所述的聚乙烯醇纯度≥99%,重铬酸钾为分析纯级,浓硫酸为质量分数98%级;所述的物质均为质量百分比。优点:基于人体天然关节骨-软骨-骨的配副形式,仿生制造软骨的人工关节,一定程度上替代了软骨的作用,不易磨损松动、界面润滑性好、生物活性充足,真正实现了代替软骨功能。
1220
0
一种高效散热复合陶瓷基板及其制备方法,复合陶瓷基板的结构为SrAl12O19陶瓷/Al2O3陶瓷/SrAl12O19陶瓷。其制备方法:通过水基流延成型分别制备Al2O3‑SrCO3混合粉体单层陶瓷素坯和Al2O3单层陶瓷素坯;将这两种单层陶瓷素坯分别叠层5~10层和10~20层后形成Al2O3‑SrCO3混合粉体多层陶瓷素坯和Al2O3多层陶瓷素坯,再将这两种多层陶瓷素坯依次叠层后形成复合结构流延片,并置于150~300MPa下温等静压得复合结构陶瓷素坯;最后依次进行马弗炉中排胶、真空炉中烧结、马弗炉中退火、双面抛光得复合陶瓷基板。该方法工艺简单,能够提高所制备得到的复合陶瓷基板的散热效率。
845
0
本发明公开了一种激光照明用高显色指数荧光陶瓷及其制备方法,该荧光陶瓷的化学式为:(Y1‑xCex)2Mg(Sc0.5Al0.5‑yMny)1Al2SiO12,其中x为Ce3+掺杂Y3+位的摩尔百分数,y为Mn2+掺杂Al3+位的摩尔百分数,0.002≤x≤0.02,0.001≤y≤0.015,采用固相反应法烧结制得。本发明提供的荧光陶瓷在460nm波长激发下,发射光谱主峰在566~585nm之间,半高宽在105~120nm之间;在蓝光LD(1~5W)激发下,实现暖白光的发射,色温3800~4250K,显色指数在80~85之间;当环境温度为150℃时,所述荧光陶瓷的发光强度保持在80%~90%,光学性能优异,制备简单,可用于激光照明领域。
1170
0
本发明公开了一种磁性复合材料及其制备方法,该复合材料由材料A、材料B混合烧制而成,材料A与材料B的重量比为100:3‑6;材料A中各成分的重量百分含量为:B 1‑3%,Nd 25‑28%,Ni 1.8‑2.2%,Ag 0.008‑0.013%,Ta 0.08‑0.12%,Tm 2‑5%,Be 0.1‑0.5%,Si 1.5‑1.9%,余量为Fe;材料B由物质(Na,Ca)0.33(Al,Mg)2[Si4O10](OH)2·nH2O、物质Na2O·Al2O3·6SiO2和四氧化三铁组成,三者之间的重量比例为1:0.2‑0.6:5。本发明磁性复合材料具有较高的综合磁性能。另外制备过种中材料经过适当处理,保证了材料成分、组织和性能的均匀性,保证了合金的质量。该材料制备工艺简便,制备所用原料成本较低,过程简单,生产的材料具有良好的性能,便于工业化生产,在电器行业具有良好的应用前景。
本发明公开了一种白光LED/LD用高热稳定性高显色指数荧光陶瓷及其制备方法,该荧光陶瓷化学式为:(TbyCexY1‑x‑y)3(MnzAl1‑z)5O12,其中x为Ce3+掺杂Y3+位的摩尔百分数,y为Tb3+掺杂Y3+位的摩尔百分数,z为Mn2+掺杂八面体Al3+位的摩尔百分数,0.0025≤x≤0.02,0<y≤0.2,0.005≤z≤0.01,y:x=10~25:1,采用固相反应法烧结制得。本发明的透明荧光陶瓷材料发射光谱主峰在541~560nm之间,半高宽在88~105nm之间,在高功率蓝光LED(350~1000mA)或蓝光LD(2~10W)激发下,能实现冷白光到暖白光发射,色温3800~7000K,显色指数在70~80之间;在150℃下发光强度衰减10%~15%,热稳定性高,且陶瓷的制备工艺简单,易于工业化生产。
中冶有色为您提供最新的江苏徐州有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日