1238
0
一种废旧线路板无害化处理方法,包括以下步骤:步骤一、将废旧线路板进行破碎;步骤二、将破碎后的废旧线路板送入振动筛进行筛分;步骤三、将破碎物料送入热解炉行裂解;步骤四、将混合金属渣进行冷却,送入滚筒筛,进行筛分,筛选出筛上料和筛下料;步骤五、将步骤三的产生的废气进行燃烧、净化、除尘,使其达标排放。通过将电路板破碎及筛选,挑选出小颗粒的物料送入热解炉进行裂解,分解出废旧线路板的可回收的金属成分,通过冷却和筛选,将金属分离,得到金属回收产物,在裂解过程中的废气,通过燃烧、净化、除尘,使其达标排放,采用本方法处理废旧线路板,金属回收效率高,分离效果好且环保无污染。
794
0
本发明涉及一种预处理具有对进一步加工这类矿石或浓缩物有干扰作用的高铋含量的硫化矿或硫化矿浓缩物的方法,以致能进一步加工这类矿石或浓缩物,回收其所含的有价金属,或至少有助于这种处理。本发明的特征在于,在预定的时间内在同时加热和pH低于2的条件下用硫酸浸出该矿石或浓缩物,此后,从浸出液中分离出呈产品形式的浸出渣,该产品与进料相比铋含量较低而其所含的有价金属更为富集。
1111
0
本发明涉及一种从镍处理的浸提循环例如镍冰铜浸提中除去硫的方法。根据该方法,镍电解冶金法中产生的阳极液借助钙基中和剂进行中和,其中硫以石膏的形式从浸提循环中除去。
1043
0
本发明涉及一种利用废旧线路板中的铜制备硫酸铜的方法。该方法具体步骤为:对废旧线路板进行预处理,使金属和非金属解离,以获得30~60目的金属粉;然后将上述金属粉以质量体积比为1∶10~20的比例与浓度为0.8~1.5mol/L的稀硫酸混合,并加入氯化钠和硫酸铜,使其质量百分比浓度分别达到5%~10%和2%~5%;向上述反应液中鼓入空气,室温下反应6~12小时;过滤,所得滤液进行蒸发结晶,即得到CuSO4·5H2O。该方法采用的原料无毒,且价廉易得,试剂消耗少,常温、常压,废液排放少,后处理简单,与其它方法相比具有明显优势。
1121
0
本发明公开了一种流态化干燥及同步预还原红土镍矿的方法,将红土镍矿干燥和预还原两个工艺在同一个多级反应器内同时完成,实现红土镍矿的流态化干燥及同步预还原。利用还原性热风作为干燥介质和还原剂,由燃烧室产生,温度为900~1100℃,还原性热风中含有一定量的还原性气体CO、H2。红土镍矿经干燥立磨后依次进入多级反应器,通过还原性热风带动矿粉颗粒使其悬浮于反应器内,对红土镍矿进行同步干燥和预还原,产出热矿粉。采用本发明方法,红土镍矿中金属镍的预还原率为50~80%,金属铁的预还原率为30~60%,干燥后矿粉含水量在5%以下,干燥时间大幅度缩短。本发明能够缩短冶炼时间,降低冶炼能耗,提高系统产能,为红土镍矿的干燥和预还原提供了一种高效、节能的方法。
1136
0
本发明提供了一种烟尘抑制剂,以质量含量计,包括以下组分:硅铝酸盐46~54%,磷酸化合物19~22%,碳酸化合物13~17%,和氯化物13~17%。本发明以硅铝酸盐、磷酸化合物、碳酸化合物和氯化物为原料制备烟尘抑制剂,并控制各组分的用量,可以使烟尘中的铁氧化物完全分解,使氮氧化合物完全挥发,并能够阻止石墨的漂浮,进而实现了对烟尘的有效抑制。实施例的结果显示,本发明提供的烟尘抑制剂对烟尘的遮盖性能为100%,阻燃性能为100%,阻止漂浮性能为100%,分解性能为100%。
1061
0
本发明公开了一种硫酸铅渣湿法清洁处理的方法,该方法首先以氯化物溶液为配位浸出剂,对硫酸铅渣进行氯化配位浸出,得到铅氯化配位浸出液及浸出渣。浸出液趁热过滤后冷却结晶,之后再次进行液固分离,分别得到氯化铅晶体及结晶后液。结晶后液回用于氯化配位浸出,结晶得到的氯化铅晶体加入到醋酸盐溶液体系内进行转化浸出。转化浸出后浸出液不经净化直接作为阴极液采用隔膜电积技术提取铅。隔膜电解结束后,阴极得到99.9%以上的电铅,而阴、阳极贫化液可返回系统使用,实现工艺流程的闭路循环。该工艺可以对硫酸铅渣进行清洁高效处理,直接得到纯度较高的电铅产品,具有原料适应性强、工艺流程简单、有价元素回收率高、清洁环保的突出优点。
966
0
本发明公开了一种金属废料回收二次资源的电解槽,涉及金属加工废料回收设备技术领域,该金属废料回收二次资源的电解槽包括正多边形槽体,阳极室由若干个与正多边形槽体的壁体平行设置的立板和连接相邻的立板端部的柔软体组成,立板与对应的正多边形槽体的壁体的垂直间距相等,正多边形槽体的上部设置有安装板,安装板上安装有驱动立板朝向对应的正多边形槽体的壁体同步移动的驱动机构;移动后的立板与阴极的间距同步的变大或者减小,极距同步的发生改变,从而可以对不同的金属肥料进行电解回收时,方便的调节极距,因此不需要繁琐的更换阳极室,也不需要储备较多规格的阳极室,使用更加方便,节省人力。
1263
0
本发明涉及一种氧化镍矿高温氯化挥发回收镍钴铁的工艺。包括以下步骤:A、将氧化镍矿和焦粉分别破碎、球磨;B、将氧化镍矿、焦粉和氯化剂混合均匀进行高温氯化挥发焙烧,使氯化的镍、钴和铁在高温下转化为气体进入烟气,在回收装置中用水洗涤、吸收和溶解烟气的氯化物溶液;C、生产含镍钴铁的氢氧混合物产品。本发明生产出含镍钴铁的氢氧混合物产品,镍的品位高,可供生产不锈钢使用。与传统的氧化镍矿湿法处理工艺相比较,本发明的从氧化镍矿回收镍钴铁的方法是一项资源综合利用效率高,能耗低,对环境友好而且易于实施的工艺。
用于处理金属提取过程例如镍提取过程中产生的混合氢氧化物产物(MHP)(10)的方法。所述方法包括下列步骤:用第一酸性溶液(12)在4~8的pH值下处理所述MHP(10),该步骤为第一再溶解步骤(14);以及将在所述第一再溶解步骤(14)中形成的第一液体(16)与在该第一再溶解步骤中形成的第一残留物(18)分离。所述方法还包括下列步骤:用第二酸性溶液(20)在0.5~4的pH值下处理所述第一残留物(18),该步骤为第二再溶解步骤(22)。以这种方式,可以在这两个再溶解步骤中选择性地除去所述MHP中的杂质。
982
0
本发明公开了一种锂离子电池正极材料的回收修复方法,包括:放电、拆解、分拣:将锂离子电池完全放电后,拆解分拣出正极极片,将正极片清洗干燥;加热搅拌:将正极极片与氢氧化锂和溶剂混合加热搅拌;蒸发干燥:加热搅拌处理后的样品中将铝箔分离后得到含活性物质的悬浊液,搅拌蒸发干燥,得混合物;高温煅烧:将干燥所得混合物高温下煅烧,得到修复的铝掺杂的正极材料。该方法通过锂元素补充直接修复正极材料,并在工艺过程中有效利用铝箔掺杂提高正极材料性能,不仅有效避免了前期额外除铝的步骤,缩短工艺流程,减少正极材料损失,且避免了传统火法回收回收率低、能耗高和污染重,以及湿法回收工艺流程繁琐复杂的缺点,有效降低回收成本。
941
0
本发明公开了一种废旧电池中磷酸铁锂正极材料的修复再生方法,该方法通过精细化拆解获得磷酸铁锂正极极片进行煅烧处理,移除粘结剂和碳黑组分,并获得废旧磷酸铁锂。将废旧磷酸铁锂进行球磨后分散于去离子水中,并加入表面活性剂,可溶性锂盐,还原剂以及碳源,充分搅拌后移入水热釜中,经水热反应后,获得修复型磷酸铁锂正极材料。将修复型磷酸铁锂粉末在惰性气氛中焙烧,获得原位碳包覆‑修复型磷酸铁锂粉末;即,本发明采用水热技术、碳包覆技术,实现除杂、原位补锂以及原位碳包覆技术,实现对于废旧磷酸铁锂的回收修复以及优化电化学性能的目的。
1127
0
本发明提供一种从废铅酸蓄电池铅膏中回收铅的方法,属于湿法冶金技术领域。该方法先将还原剂(FeCl2或双氧水)、铅膏加入氯化铝溶液于搅拌磨中进行浸出,使其中的铅进入溶液,浸出液用金属铝置换铅,铅置换后,原浸出液返回继续浸出铅渣。本工艺具有流程短、工序少、能耗成本低等特点,并满足清洁生产的环保要求。
786
0
本发明涉及用于从固体基质中回收有色金属的方法,包括如下阶段:(a)在氧存在下,在温度100℃-160℃和压力150kPa-800kPa下,用含氯离子和铵离子、pH为6.5-8.5的含水基溶液沥滤固体基质,以获得包含沥滤金属的提取溶液和固体沥滤残余物;(b)将所述固体沥滤残余物与所述提取溶液分离;(c)使所述提取溶液经历至少一次置换沉淀以回收元素态的金属。
1254
0
本发明公开了一种电絮凝组合膜技术处理湿法冶金中萃余液的工艺,包括如下步骤:步骤1:湿法冶金中萃余液通过电絮凝处理,除去料液内有机溶剂和钙离子;步骤2:经电絮凝处理后料液进入微滤系统除去大分子物质和絮状物,得微滤产水和微滤浓水,微滤浓水返回步骤1进行电絮凝处理;步骤3:微滤产水进入电渗析系统进行浓缩、除盐,得电渗析淡水和电渗析浓水;步骤4:电渗析淡水使用反渗透进行深度处理,反渗透产水返回至生产工艺,反渗透浓水返回步骤3进行电渗析系统处理。本发明所述的工艺使萃余液能够达到回用的目的,杜绝活性炭及化学药剂的使用,同时降低蒸发成本,提高回用水量,达到萃余液向外的零排放。
1081
0
电镀污泥资源化利用的方法,包括以下步骤:(1)预处理:以湿法工艺分离出电镀污泥中的重金属元素,以石灰或石灰石中和电镀污泥,得二水硫酸钙为主要成分的电镀污泥废渣;(2)生料制备:以电镀污泥废渣取代生料配料中的全部石膏、全部铁质原料,或替代部分石膏、部分铁质原料,与石灰石、钒土配料、粉磨制取生产硫铝酸钙或硫铁酸钙熟料用生料;(3)1250~1400℃焙烧0.5~1h。本发明将电镀污泥作为含多金属的原料,对电镀污泥实施资源化资源化利用,制取两大类材料,即相应的金属和/或金属盐材料和石膏基建筑材料,利于解决电镀行业的污染问题,利于实施循环经济发展。
810
0
本发明属于复杂二次有色金属资源综合循环再利用技术,具体为一种废弃电路板多金属混合资源中铬元素的富集与分离方法。首先,废弃电路板经破碎+分选后获得的含有铬元素的多金属复杂混合物,在多金属复杂混合物中加入捕集剂,将配置好的多金属复杂混合物置于真空炉的石墨坩埚中,待金属混合物完全熔化后,加入微量富集剂磷元素,调节铜与铁两液相的分离率,使铬元素富集到铁液相中,形成上层为液态铁和下层为液态铜的分离熔体,将捕集了铬元素的上层液态铁倒出。由此,铬元素从废弃电路板多金属复杂混合物中分离出来,并得以循环再利用。本发明简捷易行,具有成本低、综合高效、无污染等特点。
899
0
一种电镀污泥材料化利用方法,包括以下步骤:(1)预处理;(2)生石膏料制备;(3)熟料制备;(4)石膏超细填料或硬石膏胶凝材料制成。本发明选用成熟的湿法工艺中的硫酸浸取法和生物浸取法预处理分离电镀污泥中的重金属,并以石灰或石灰石中和,一则可低成本的回收绝大部分有价金属或重金属制取相应的金属或金属盐材料,且易于获得较高纯度的金属或金属盐材料或原料;二则可简便地获得以二水石膏为主要矿物的污泥废渣,即可利用的石膏基资源。无电镀污泥废渣排放,彻底消除废渣的环境污染及隐患,利于环境保护。
772
0
一种含砷锑难处理金矿熔池熔炼直接富集金的方法,含砷锑难处理金矿与氧化铁渣混合配料后加入到渣型组成一定的高温熔体中,然后通入富氧空气氧化熔炼,产出的含金硫化铁精矿直接返回熔炼过程。低锑铁锍相进入选择性吹炼过程进一步富集金,控制吹炼终点使金进入贵铁锍相,最终从贵铁锍相中提取金,吹炼过程烟气经收尘后产出Sb2O3烟尘,含SO2尾气与熔炼过程烟气合并制硫酸,吹炼过程产出的氧化铁渣返回熔炼过程配料。通过熔池熔炼和选择性吹炼过程,实现难处理金矿中金的高效富集与回收,金的直接富集率可以达到92~95%,金的总回收率可以达到99.0%以上。
834
0
本发明是一种盐酸浸出氧化镍矿回收镍钴锰铁的方法,该方法先将氧化镍矿进行球磨得矿粉;然后向矿粉中加入矿粉添加剂;再使用盐酸对矿粉混合物进行浸出处理,得到氧化镍矿的盐酸浸出液;向盐酸浸出液中加入氧化剂进行处理获得钴氧化物和锰氧化物的共沉淀,向滤液中加入氧化钙或氢氧化钠进行处理,获得含镍和铁的混合物沉淀。本发明方法工艺设计合理,可操作性强,可有效地利用矿产资源,可以实现大规模工来化生产;实现了氧化镍矿盐酸浸出液中镍、钴、锰和铁共4种元素的回收利用;节约了生产成本。
本发明属于锂离子电池正极材料综合利用技术领域,具体涉及一种锂离子电池正极材料的全干法提纯方法及提纯得到的锂离子电池正极材料。该方法包括如下步骤:1)将锂电池正极回收材料的碎料低温加热至粘接剂失效,得到集流体和锂电池正极待提纯材料分离开来的混合料;2)对集流体和锂电池正极待提纯材料分离开来的混合料进行震动筛分,得到分离掉集流体的锂电池正极待提纯材料;3)将分离掉集流体的锂电池正极待提纯材料进行烧结,得到锂电池正极提纯材料。本发明实现了锂离子电池正极材料的全干法提纯,提纯得到的锂电池正极提纯材料纯度高。
738
0
本发明公开了一种废旧磷酸铁锂电池材料短流程回收的方法,涉及资源回收技术领域,方法为将废旧磷酸铁锂电池依序经放电、拆解,剥离壳体,分离得到正极片,正极片在氮气保护下通过加热使粘结剂碳化,振动分离得到磷酸铁锂正极材料和铝箔,将收集到的磷酸铁锂正极材料水洗后烘干,得到磷酸铁锂/碳粉料,往磷酸铁锂/碳粉料中加入锂源、磷源以及V2O5,得到混合粉料,将其机械液相活化,得到混合浆料,将混合浆料依序经干燥,煅烧,得到再生磷酸铁锂材料。本发明的方法工艺流程短,避免了传统湿法回收溶剂污染的问题,也无需浸出、萃取、沉淀等操作,更利于大规模实行。
1222
0
本发明涉及一种稀土元素离子的萃取方法,包括如下步骤:将表面包覆有萃取液的气泡加入至含有稀土离子的水溶液中,气泡上浮后破裂,将有机相反向萃取,得到稀土富集液。本发明通过将萃取液分散在极小体积的气泡表面并通入稀土离子溶液中,使得稀土溶液与有机萃取剂在极大的体积比条件下进行两相接触,能够在无须对萃取液进行皂化预处理的前提下实现低浓度稀土离子的高效萃取,避免含氮或浓盐废水的生成,且有机相经过反相萃取后原有萃取剂可以回收利用,本方法具有节能环保、工艺简单、产品经济等诸多优点。
1185
0
本发明公开了一种从废弃锂离子电池电极材料中分离钴酸锂和石墨的方法,包括以下步骤:(1)将废弃锂离子电池混合正负极材料通过筛分,得到筛下物料;(2)筛下物料通过过滤烘干后,进入磨矿设备,得到磨矿产品;(3)磨矿产品进入浮选机进行反浮选分离富集,即一段浮选,沉物为钴酸锂精矿,浮物过滤烘干后进入破碎设备处理,然后进行二段浮选,二段浮选的浮物为石墨尾矿,沉物为钴酸锂中矿,钴酸锂中矿返回步骤(2)的磨矿设备重新进行磨矿浮选。本方法可以获得品位分别为92.56%和83.67%的钴酸锂和石墨产品,并具有处理量大,设备技术成熟,成本投资低,不产生有毒气体及废水的优点,是工业化运用的良好选择。
964
0
本发明公开了一种全回收废旧锂离子电池并实现金属分离的方法,将废旧锂离子电池芯粉碎,将所得黑色粉末加入空气焙烧,所得焙烧渣加入氨性溶液浸出,收集滤渣和滤液,滤液为含锂镍钴的液体;对所得滤液加热蒸发,收集蒸发的气体,返回氨浸工序,对蒸发后的液体过滤,收集滤渣,得到镍钴混合氢氧化物、氢氧化镍或氢氧化钴;再将滤液加热结晶,收集并干燥结晶产物,得到碳酸锂。该方法同时回收了废旧电池中的正极材料和负极材料,并实现了铁、锰、锂和镍钴的分离,回收过程没有二次污染,工艺流程短,成本低。
1127
0
本发明公开了一种冶金的余热回收装置,包括框架,所述框架的内部中心卡扣连接有换热管,所述换热管的中部卡扣连接有清洁架,所述清洁架的两侧中心均螺纹连接有丝轴,所述丝轴的一端固定连接有副链轮,所述框架的顶部固定连接有驱动电机,所述驱动电机的输出端固定连接有主链轮,所述主链轮的表面通过链条与副链轮的表面传动连接,所述框架的正面和背面分别固定连接有正面板和背面板,所述框远离驱动电机的一侧固定连接有控制器。该一种冶金的余热回收装置,达到热能转化成电能进行存储,再供能,避免资源浪费的同时提高燃料利用率,且余温回收后烟气温度与大气温差较小,可避免对环境造成影响。
本发明属于三元材料前驱体制备技术领域,具体涉及一种利用废旧锂离子电池三元正极材料制备三元材料前驱体及回收锂的方法。将废旧锂离子电池正极原料焙烧,筛分得到三元正极材料和铝箔;将三元正极材料用苛性碱溶液浸出,过滤得到滤液和滤渣;滤液中加入碳酸盐反应,得到碳酸锂固体;用易挥发性酸浸出滤渣;向浸出液中加入还原剂,加热至沸腾除去易挥发性酸;调整浸出液中镍、钴、锰摩尔比;将调整镍、钴、锰摩尔比以后的浸出液与氨水溶液、苛性碱溶液并流加入至含有氨水溶液的反应釜中,在惰性气体保护下共沉淀。本发明实现了制备三元材料前驱体的同时,又回收了锂,降低了生产成本,产品质量高,经济性好,实现了镍钴锰锂资源的定向循环。
965
0
本发明公开一种废旧锂离子电池选择性脱铜的方法,该方法包括:以含铜废旧锂离子电池为原料,采用含氨水的碱性介质为浸出溶液,将破碎或焙烧后破碎的所述含铜废旧锂离子电池原料在所述浸出溶液中将铜浸出分离,铜的浸出率达93~99.99%,进入氨性水溶液中,而锂、钴的浸出率则分别只有5~25%、0.1~15%,有利于从铜溶液中进一步回收铜,浸出渣中锂、钴得到富集。该方法工艺简单,采用含氨水的氨性浸出液,控制浸出条件,将铜优先浸出,而锂、钴等则主要留在浸出渣中,有利于废旧锂离子电池中有价金属的高效回收。本发明所用原材料价格低廉,处理条件温和,脱铜效率高,适于大规模废旧锂离子电池的脱铜需要,生产成本低。
1150
0
一种红土镍矿提取镍钴的方法,包括红土镍矿的矿物制备、氯化物浸出、固液分离、浸出液浓缩、硫化沉淀、固液分离和盐酸回收。氯化物浸出剂为金属氯化物与盐酸的混合溶液,浸出液经加热浓缩,氯化铁与氯化镁结晶析出,使FE/NI比降低至浓缩前的1/5以下,采用盐酸回收过程中产生的氧化镁或氧化铁为中和剂,用多硫化物、刚沉淀的金属硫化物、金属硫化物为硫化沉淀剂,沉镍后的母液经浓缩,与浸出液浓缩时得到的氯化铁和氯化镁一起焙烧,母液中的金属氯化物及浓缩时得到的金属氯化物水解为氯化氢和金属氧化物,得到的酸循环使用。本发明提高了红土镍矿在浸出过程中镍、钴等有价金属的浸出率,降低了能耗,对环境友好。
中冶有色为您提供最新的有色金属火法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!