724
0
本发明涉及一种锂离子电池化成工艺及其得到的锂离子电池,锂离子电池化成工艺采用分段负压和分段电流相结合的方式,化成过程包括三个阶段,第一阶段,负压为‑20~‑60Kpa,以0.05‑1C恒流充电至5‑15%SOC;及第二阶段,负压为‑80~‑90Kpa,以0.1‑0.3C恒流充电至20%‑30%SOC,及第三阶段,负压为‑20~‑40Kpa,以0.3C‑0.5C恒流充电至截止电压;上述化成工艺有利于化成过程排气,降低失液量,避免电芯鼓胀,改善化成界面;且其操作简便、化成时间短,便于生产,同时,本发明化成工艺采用一次满充,有利于电极与电解液界面副反应充分进行,提高了容量一致性及自放电筛选一致性。
957
0
本发明公开了一种高功率锂离子电池负极材料的制备方法,包括以下步骤:首先制备Zn/Co‑ZIF;然后于保护气中,将亚铁盐溶液、钴盐溶液和镍盐溶液与Zn/Co‑ZIF溶液混合,再加入2‑甲基咪唑溶液,搅拌均匀后静置,抽滤洗涤干燥,获得核壳结构的Zn/Co‑ZIF@Fe/Co/Ni‑ZIF;最后将Zn/Co‑ZIF@Fe/Co/Ni‑ZIF依次在保护气中和在空气中进行煅烧,获得高功率锂离子电池负极材料。本发明以核壳结构的Zn/Co‑ZIF@Fe/Co/Ni‑ZIF为前驱体进行保护气和空气中的两步煅烧,获得高功率的锂电负极材料,制备过程简单,条件温和,适用于工业化生产。
1122
0
本发明提供了一种锂离子电池电解液和含其的磷酸铁锂电池及制备方法。所述电解液包括有机溶剂、添加剂和锂盐,所述有机溶剂包括丙酸乙酯,按质量分数计所述丙酸乙酯占所述电解液的质量分数为20~40%;所述添加剂包括碳酸亚乙烯酯、氟代碳酸亚乙烯酯、羧酸乙烯酯和三(三甲基甲硅烷基)磷酸酯。本发明电解液中添加10~40wt%的丙酸乙酯,来明显的改善电池的低温放电性能,通过添加剂碳酸亚乙烯酯、氟代碳酸亚乙烯酯、羧酸乙烯酯和三(三甲基甲硅烷基)磷酸酯的配合使用,得到低阻抗、优异的低温性能与较长的循环寿命的电解液。
1102
0
本发明公开了一种包覆型锂电池用前驱体,前驱体的化学式为Ni0.85Co0.10Mn0.05‑aMa(OH)2+b,其中,M为Y、W、Ti、Mg中的一种或几种,0<a≤0.01。前驱体的制备方法包括:在惰性气体保护下将混合盐溶液、碱溶液、氨水加入到含有底液的反应釜中进行共沉淀反应至物料颗粒达到目标粒度,将物料转移到陈化槽进行陈化后再进行离心洗涤、干燥、煅烧,得到多孔掺杂型镍钴锰氧化物前驱体;向磷酸盐溶液中加入多孔掺杂型镍钴锰氧化物前驱体后搅拌并加热至烘干水分。锂电池正极材料的制备方法包括为:将前驱体与氢氧化锂混合后在通有氧气的气氛炉中高温烧结。本发明能够提高三元正极材料的容量保持率和循环性能。
884
0
本发明涉及一种锂离子电池负极片及其制备方法与锂离子电池,所述制备方法包括如下步骤:(1)混合铜氨溶液和金属箔片进行钝化处理,得到预处理箔片;(2)混合石墨、导电剂和功能性粘结剂,得到负极浆料;(3)将步骤(2)所得负极浆料涂覆在步骤(1)所得预处理箔片上,烘干后,得到所述锂离子电池负极片。本发明中,经过表面钝化提高了金属箔片表面与浆料的粘结能力,同时,采用了具有较高粘结能力的功能性粘结剂,使得负极片的结构更加稳定,粘结性更强,且有效的降低了充放电过程中的体积膨胀问题。所述锂离子电池负极片应用于12V高功率磷酸铁锂电池中,既具有高功率,且能够保障电池的低自放电率和长循环寿命。
本发明涉及一种钒酸锂/氮掺杂石墨烯锂离子电池负极材料,所述电极材料组分为Li3VO4/氮掺杂石墨烯;其具体制备步骤为:将分析纯(99.9%)的化学原料偏钒酸铵、氢氧化锂、六次甲基四加去离子水搅拌,得到均匀溶液;将氧化石墨烯粉末加去离子水,经超声分散得到分散液,将所得分散液逐滴加入上述得到的均匀液体中,搅拌,得到混合溶液;将上述得到的混合溶液转移至水热反应釜中于200℃下反应4~20小时,自然冷却后烘干,再在400-600℃,氮气条件下烧结2~10小时后,得到钒酸锂/氮掺杂石墨烯锂离子电池负极材料。该负极材料中石墨烯为氮掺杂,负极材料中Li3VO4分散在氮掺杂石墨烯中,平均尺寸约40nm,所制备Li3VO4/氮掺杂石墨烯复合材料充放电容量高,循环性能优异。
1002
0
本发明提供了一种柔性锂离子电池封装膜、锂离子电池封装方法及制备的一体化锂离子电池。封装膜由外至内为聚合物薄膜外层、无机氧化物阻隔层和聚合物薄膜内层组成,外层有良好的柔弹性和一定厚度防止外部对电芯损伤;阻隔层能阻止空气中水分、氧气的渗透;内层不会被电芯内有机溶剂溶解、溶等,具备热封性质,使电池封装易操作。封装方法,采用锂离子电池封装膜,在其上制备纳米层铜箔/铝箔作为集流体,其上涂布活性材料,其上涂覆固态电解质膜,再将正负极面的固态电解质面压合粘结,热封,制备柔性锂离子电池。优点为将封装材料与集流体一体化,有效降低电池厚度,增加电池整体柔性,且有效提高了封装材料的柔韧性及耐折性。
916
0
本发明属于化学电源相关技术领域,其公开了一种锂硫电池正极材料及其制备方法、电极片及锂硫电池,该锂硫电池正极材料是由有机物与硫粉熔融后形成的液态硫通过共聚合反应形成的,其通过化学键合的方式进行固硫;所述锂硫电池正极材料中硫的质量含量为50%~90%。所述制备方法包括以下步骤:(1)对硫粉进行热处理以得到液态硫,并向所述液态硫中添加有机物进行高温固化以得到混合物;(2)将所述混合物依次进行研磨及热处理以使所述硫粉与所述有机物进一步发生共聚反应,由此得到所述锂硫电池正极材料。本发明是通过化学键合的方法来有效固硫,实现电池的稳定循环,且含有高的硫含量,提高了电池能量密度及硫的利用率,降低了生产成本。
1064
0
本实用新型公开了一种锂电池电解液锂带除杂装置,包括若干个除杂筒、提手部和锂片,所述除杂筒包括筒本体以及密封设置于所述筒本体下端的挡板,所述挡板的半边均匀开设有若干个通孔,其另半边不开孔;所述锂片竖直放置于所述除杂筒内,所述锂片的高度与除杂筒的内腔高度一致,所述锂片为拧成麻花状的锂片;若干个除杂筒从下至上依次密封连接,所述提手部密封安装在最上面一个除杂筒的上端,所述提手部靠近除杂筒的端部设置有底板,所述底板的半边开设有若干个通孔,其另半边不开孔。本实用新型可以保证电解液在回流除杂过程中高效、充分的使含有杂质的电解液得到彻底除杂,从而提高配制电解液的质量,提升电池品质。
896
0
本实用新型提出了一种锂电池阴极表面锂离子分布的检测装置,它包括位移平台,所述位移平台上表面固设有升降台,所述升降台上端固设有样品夹具,所述位移平台、升降台、样品夹具及锂电池阴极样品均内置于负压腔室;所述负压腔室上设置有透明薄片、透明观察窗;所述透明薄片正上方设置有第一聚焦镜,所述第一聚焦镜入射光一侧间隔设置有反射镜,所述反射镜入射光一侧间隔设置有脉冲激光器,所述脉冲激光器连接有电脑;所述透明观察窗右侧间隔设置有第二聚焦镜,所述第二聚焦镜折射焦点处设置有采集头,所述采集头通过光纤依次连接有光谱仪、ICCD探测器。本实用新型结构简单,装配便捷,能够绘制出锂电池阴极表面亚毫米的二维锂的分布图。
748
0
本发明涉及一种锂电池用电解液及锂电池、双羧酸酯类溶剂的应用,所述电解液中包含锂盐和溶剂,所述溶剂包括式A所示的化合物。本发明在电解液中加入式A所示的溶剂,该溶剂液程较宽,有利于锂电池高低温性能的提升;其次,该溶剂在高电压体系中有更好的稳定性,增大了锂电池的安全可靠性;同时,相比其他溶剂,该溶剂粘度低,流动性好,易于浸润极片和隔膜,降低了锂电池的交流内阻和直流内阻,提升了电池的功率性能和循环性能。
1208
0
本发明适用于锂电池技术领域,提供一种锂电池隔膜拉伸成型装置、方法及锂电池隔膜,所述装置包括多个拉伸辊筒,所述相邻拉伸辊筒间的拉伸间隙为50~100mm,所述拉伸辊筒数量多于3个。所述方法包括:将热熔高聚物晶化处理制得薄膜基片;将所述薄膜基片导入所述锂电池隔膜拉伸成型装置,相邻的拉伸辊筒对所述薄膜基片进行小间隙逐级拉伸;对所述拉伸后的薄膜基片进行热处理,制得锂电池隔膜。本发明采用小间隙多级拉伸方法,制得的锂电池隔膜孔隙大小统一、分布均匀,隔膜平整度好,收缩率小,不会出现缩颈现象。
874
0
本发明公开了一种载人潜器用锂离子蓄电池安全性能测试方法,通过压力模拟装置模拟测试及开路电压测试,以开路电压变化为判定主要依据进行锂离子电池在承压状态的安全性能预判;通过本发明的测试方法,可以快速、简单地对锂离子电池单体是否具备在全海深压力范围内进行有效放电的安全性进行快速评估,为万米承压的深海载人潜器在在0~11000米海水下压力范围内的安全运行提供安全、可靠的能源动力保障。
本申请涉及监控、分析锂离子电池负极极片反弹的方法及锂离子电池。所述锂离子电池包括正极极片,所述正极极片包括在正极箔材的两侧上间断布置的正极材料涂层,使得所述正极极片具有无正极材料涂层的第一区域和具有正极材料涂层的第二区域;负极极片,所述负极极片包括在负极箔材的两侧上连续布置的负极材料涂层;和隔膜。其中,所述隔膜布置在所述正极极片和所述负极极片之间。本申请还涉及根据锂离子电池负极极片反弹的方法及锂离子电池对负极材料进行优化。
本发明公开了一种细菌纤维素‑壳聚糖‑锂藻土复合伤口敷料,由壳聚糖、锂藻土依次交联到细菌纤维素上形成;所述细菌纤维素、壳聚糖、锂藻土的质量比为6:1.5~3:12~18。本发明原料易得,制备工艺简单;采用物理交联的方法将细菌纤维素、壳聚糖、锂藻土复合形成三维纳米纤维网络,在临床使用时,敷料使得创面被透气网状结构的高分子纳米层所覆盖,形成了一个理想的愈合环境,可加快细胞的有丝分裂,保持伤口局部湿润,不会形成干痂,减少疼痛,同时降低感染几率,将产品的细菌阻隔和保湿作用发挥至最佳,复合后的细菌纤维素的机械性能以及保水透气性能得到进一步提高。本发明产品能够有效加快伤口愈合速度,对于慢性难愈合或烧烫伤创面的护理效果尤其显著。
946
0
本发明公开了一种磷酸铁和磷酸铁锂的制备方法及磷酸铁、磷酸铁锂材料,属于无机材料技术领域。所述磷酸铁的制备方法包括:分别配制铁盐溶液和磷酸(盐)溶液;其中,铁盐溶液和磷酸(盐)溶液的浓度小于5mol/L;将所述铁盐溶液与磷酸(盐)溶液混合,搅拌形成混合溶液;其中,磷酸(盐)与铁盐的摩尔比不小于1:1;将所述混合溶液于70~90℃保温反应得到反应产物,将反应产物中的沉淀物分离并洗涤、干燥,得到单斜晶系、均匀纳米圆盘状磷酸铁。使用该方法制备的磷酸铁合成出的锂离子电池正极材料磷酸铁锂有很好的高功率性能和低温性能,利于电池的快充电和低温充放电。本发明制备方法简单,产品形貌易于调控,适于大规模化工业生产。
1229
0
本发明涉及氟离子掺杂和氟化锂包覆磷酸铁锂正极材料的制备方法,其通过使用少量的六氟磷酸锂作为前驱体低温煅烧得到正极材料,工艺简单、操作容易、能耗较低、原材料便宜易得,所得正极材料电化学性能优越。
1342
0
本发明提供一种石墨烯复合碳包覆Ga2O3锂离子电池负极的制备方法。利用冷冻干燥和高温烧结制备所述活性物质石墨烯复合碳包覆Ga2O3材料,具体步骤是:(1)配制氧化石墨烯水溶液,加入聚乙烯醇胶体溶液和葡萄糖粉末,搅拌均匀后加入硝酸镓,搅拌至全部溶解;(2)将步骤(1)的溶液在‑20℃以下冻结10‑15h后,再在真空下干燥20‑28h,得到柱形泡沫;(3)将柱形泡沫在50‑70℃下烘干后于400℃~650℃管式炉中氮气条件下烧结3~12h得到石墨烯复合碳包覆Ga2O3多孔结构复合材料。氧化石墨烯、聚乙烯醇胶体、葡萄糖、硝酸镓的添加质量比为2~3:0.5~1:0.5~1:10~30。所得石墨烯复合碳包覆Ga2O3可用于锂离子电池负极,能够显示良好的电化学性能,具有很好的应用前景。
1211
0
本发明提供一种稳定化合物锂离子电池负极材料,该材料的活性部分包括α‑Ga2O3。所述的α‑Ga2O3由大量的微米方块组成,方块长度为1‑1.5μm,宽和高为200‑800 nm。具体方法是将硝酸镓,六次甲基四胺,硫酸钠,柠檬酸于容器中,加去离子水,搅拌至全部溶解,将溶液转移至水热内胆中,添加去离子水;将内胆固定后在鼓风烘箱中水热反应得到前驱体;将前驱体烘干后于管式炉中烧结得到α‑Ga2O3。所得α‑Ga2O3可用于锂离子电池负极,能够显示良好好的电化学性能特性,具有很好的应用前景。
745
0
本发明提供一种Cu2S/Cu锂离子电池负极材料,该负极材料为三维多孔网状结构,该负极材料的制备方法如下:(1)取适量硫脲置于容器中,然后加适量去离子水充分搅拌得到均匀溶液,然后再加入适量双氧水;(2)将步骤(1)得到的均匀溶液转移到水热反应釜中,并放置若干片泡沫铜,于90~150℃下反应4~10小时后,自然冷却即得到Cu2S/Cu样品。方法简单,可控性强;所制备Cu2S/Cu中Cu2S均匀生长在泡沫铜表面,呈现多孔的网状结构;所制备Cu2S/Cu可直接用作无粘结剂锂离子电池负极,具有较好电化学性能。
1100
0
本申请公开了硅酸锂负极材料的制备方法以及锂离子电池。硅酸锂负极材料的制备方法包括:A、提供SiO粉末;B、将SiO粉末和金属锂粉进行干法球磨,得到含有硅锂化合物和硅酸锂的第一中间物;C、将第一中间物进行脱锂反应,得到含有硅单质和硅酸锂的第二中间物;D、使第二中间物煅烧,得到硅酸锂负极材料。本申请制备方法,通过SiO粉末与金属Li粉混合球磨实现两项物质均匀混合,粒径均匀。不仅如此,在煅烧过程中通入低分子量的烃类气体,促进了硅酸锂负极材料成型。采用上述制备方法所得到负极材料组装到电池中,质量比0.2C容量大于1600mAh/g,1C容量大于1600mAh/g,显著说明本发明的锂离子电池硅碳复合负极材料具有良好的首次效率和倍率性能。
本发明属于废旧锂离子电池回收及资源循环利用技术领域,具体涉及一种锂离子电池正极材料的分离提纯方法及得到的锂离子电池正极材料。该方法包括以下步骤:1)锂电池正极回收材料的碎料低温加热至粘接剂失效,得到集流体和锂电池正极待提纯材料分离开来的混合料;2)对集流体和锂电池正极待提纯材料分离开来的混合料进行震动筛分,得到分离掉集流体的锂电池正极待提纯材料;3)将分离掉集流体的锂电池正极待提纯材料进行风选,得到锂电池正极分离提纯材料。本发明实现了锂离子电池正极材料的全干法提纯,提纯得到的锂电池正极提纯材料纯度高。
1089
0
本发明提供了一种具有补锂功能的正极及其制备方法和锂离子电池,所述正极包括集流体和设置于所述集流体至少一侧的补锂层,所述补锂层包括正极补锂剂和碳源,所述补锂层在远离集流体的一侧设置有正极活性材料层。本发明在集流体和正极活性材料层之间设置补锂层,补锂层中包括正极补锂剂和碳源,两者协同作用,能够有效避免正极补锂剂对正极活性材料的负面影响,提高正极活性材料与集流体的粘附力,降低正极活性材料的损耗,降低电池内阻,抑制电池极化,保护集流体不被电解液腐蚀,减少热效应,进一步提高锂离子电池的容量和循环性能。
1111
0
本发明涉及一种磷酸铁锂聚合物锂离子电池的正极膜。本发明采用丙酮为溶剂,将磷酸铁锂正极材料,导电剂,高支链结构高孔隙的炭黑聚集体的导电石墨,低支链结构低孔隙的炭黑聚集体的导电炭黑,增塑剂,PVDF/HFP均匀混合,配成浆料,再将浆料均匀涂布在聚酯薄膜的基材上,通过干燥,得到磷酸铁锂聚合物锂离子电池的正极膜。本发明与现技术相比可以彻底改善磷酸铁锂正极膜涂布至辊压工序段加工难问题,同时不影响磷酸铁锂聚合物锂离子电池的正极膜的导电性;可以提高正极浆料固含量,降低溶剂丙酮的使用量;溶剂去除容易,设备能耗少,工艺过程环保。
921
0
本发明提供一种锂电池析锂检测的方法,包括如下步骤:获知锂电池的前n次充放电循环下的充电结束后的静息掉电电压差detaVC和放电结束后的静息回弹电压差detaVD,预测第n+1次充放电循环下的充电结束后的静息掉电电压差的理论值,计算理论值的置信区间,将理论值的置信区间与实际值进行比较,如果理论值的置信区间的下限大于实际值,则判断锂电池发生了析锂,如果理论值的置信区间下限小于等于实际值,则没有发生析锂。建立充电结束静息掉电电压差与放电结束静息回弹电压差之间的关系,将析锂造成的充电结束静息电压回弹剥离出来,以此来判断电芯是否析锂。
1173
0
本发明公开了一种碳包覆磷酸亚铁锂(LiFePO4@Cx)的合成方法,该方法以自制的超微细磷酸铁(FePO4·2H2O)为原料与锂源和含碳化合物制备成糊状、粉状或片状前驱体,焙烧后得到碳包覆磷酸亚铁锂,相应合成方法分别简称为糊状法、粉状法和片状法。将得到的前驱体置于动态惰气炉中于400~700℃下焙烧4~12h,冷至室温后研磨,得到黑色粉末状产物碳包覆磷酸亚铁锂。本发明所得产品为超微细粒子、粒径分布均匀,橄榄石型晶体的结构纯正,不同批次产品重复性好,用作正极材料的锂离子电池高倍率性能和循环性能优异,适用于动力型锂离子电池。
797
0
本发明公开用于锂离子电池电极的碳包覆磷酸钒锂粉体制备方法,先是将设定份量的二水合醋酸锂、偏钒酸铵、二水合磷酸二氢铵、蔗糖倒入球磨罐中再加无水乙醇密封高速球磨,滤出浆料并烘干,研磨得到Li3V2(PO4)3复合材料前驱粉体;再将设定份量的碳粉、铁粉和石英砂均匀混合,制成黑色还原性粉体;然后将前驱粉体倒入带盖小坩埚,外面包扎铝箔纸后倒置于大坩埚内,两坩埚缝隙间填充还原性粉体并加盖,放入马弗炉中烧结,最后将小坩埚内烧结料研磨,得到碳包覆磷酸钒锂粉体。本发明无需还原性或惰性气体,还原性粉体可重复使用,晶粒均匀且小于1um,制成锂离子电池正极比容量高,制成的电池极化作用小、电荷扩散阻抗小;方法简单、成本低,适合工业化生产。
954
0
本发明公开了一种从磷酸铁锂废料中回收磷酸铁和碳酸锂的方法,具体包括如下步骤:步骤一,氧化焙烧;步骤二,极片清洗;步骤三,加磷酸球磨活化;步骤四,酸洗分离FePO4;步骤五,滤液沉锂,得到目标物Li2CO3。本发明的优点在于,能够充分利用磷酸铁锂废料中的P、Fe、Li资源制备高附加值的磷酸铁和碳酸锂产品,无Fe的废渣产生,资源回收率高,工艺流程短、反应体系简单,原材料消耗少,成本低,产品价值高,非常适合工业规模生产。
本发明属于锂离子电池技术领域,涉及一种表面包覆的锂离子电池正极材料、制备方法和锂离子电池。本发明提供的表面包覆的锂离子电池正极材料,包括:锂离子电池正极材料和包覆于锂离子电池正极材料表面的包覆层,所述锂离子电池正极材料为三元正极材料,所述包覆层为经过预处理的PEDOT:PSS。该正极材料的制备方法,包括:将经过预处理的PEDOT:PSS与三元正极材料混合,得到表面包覆的锂离子电池正极材料。本发明提供的包覆后的正极材料导电性好,不易团聚,稳定性好,改善了正极材料的循环性能。本发明提供的制备方法步骤简单,易于实施,成本低,适合工业化生产。
1187
0
本发明涉及锂电池技术领域,特别涉及一种无负极锂电池结构及无负极锂电池的制备方法。本发明的无负极锂电池结构包括正极集流体和负极集流体,所述正极集流体外设有阴极锂源涂层,所述负极集流体外设有液态金属涂层,所述正极集流体和负极集流体之间通过与二者相互贴合的隔膜分隔。制作方法为:将正极材料、无负极锂电池结构和电解液装配在一起,得到无负极锂电池。优点:解决了现有的锂电池能量密度不足的问题,有效提高能量密度。
中冶有色为您提供最新的湖北有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日
2026年01月23日 ~ 24日