1028
0
本发明涉及无标记G蛋白偶联受体(GPCR)的细胞筛选模型构建方法及应用,具体地说是一种无标记细胞膜受体GPR88的细胞筛选模型。本发明基于无标记细胞整合药理学技术,利用GPR88稳定表达的细胞系,建立了筛选GPR88受体激动剂和拮抗剂的方法。此方法还可用于研究影响受体下游通路的调节剂。本发明构建的GPR88细胞筛选模型不需荧光标记且检测过程无需额外添加指示剂,具有靶点‑通路整合响应、对细胞无损伤、检测结果可靠、灵敏度高、筛选通量高、周期短及操作简便等特点。其用于从天然产物库、代谢产物库及组合化学库中寻找GPR88受体的激动剂、拮抗剂和通路调节剂,及GPR88受体密切相关的中枢神经系统疾病,如精神分裂、帕金森病、焦虑症、抑郁症、药物成瘾等精神疾病的药物筛选。
771
0
本发明公开了一种竹纤维交织面料,包括以下步骤:A、材料的选取;B、前处理:包括烧毛、退浆、煮练、漂白和丝光C、染色:用涂料在轧车上进行涂料染色生产工艺,包括燃料的准备、浸轧染液、红外线预烘、热风烘干和焙烘,所述热风烘干的温度控制在60℃,所述染色时间设置为60分钟;D、定型:所需条件:温度110摄氏度,速度35m/min;E、检测:对面料进行物理指标、化学指标和服用性能等进行检测。该竹纤维交织面料制作出来的面料吸收性好,手感柔韧,肤感,布料高级感强,舒适。
854
0
本发明公开了一种高热稳定性近红外荧光粉及其制备方法与应用,该荧光粉的化学式为NaRE1‑xMg1‑xWO6:2xR,其中基质为NaREMgWO6,RE为稀土元素Gd或者La,发光中心离子R为Cr3+或者Mn2+,x是发光中心离子R的摩尔分数,0<x≤0.1,具有两个发光中心;采用固相烧结法制备。所述近红外荧光粉发射波长位于700nm~1100nm,发射峰位于800nm~900nm,在150℃下发光强度衰减小于15%。能够很好地在生物检测、生物体成像和食品检测中得到应用。本发明采用的固相烧结法制备工艺简单,易于操作控制,安全性高,制备时间短,便于大规模生产及推广应用。
744
0
本发明公开了一种提高肉苁蓉种子发芽率的方法,首先将肉苁蓉种子经过筛选,然后将肉苁蓉种子置于杀菌剂中进行处理5‑10min,然后将肉苁蓉种子置于无菌水中进行清洗,然后将清洗后的肉苁蓉种子经过晾晒干燥,然后将肉苁蓉种子放置于28‑35C°的温度下干燥5‑8h,然后通过水分检测仪检测肉苁蓉种子。通过采用本发明的处理方法,能够极大的提高肉苁蓉种子的发芽率,不需要在接种时大批量的播种,极大的保证了产量的稳定性,给种植工作带来了极大的便利,而且通过采用电解处理和化学处理极大的刺激了肉苁蓉种子中多种酶的表达,增强了肉苁蓉种子的萌发特性,改善了肉苁蓉种子对营养元素的固化能力,提高了肉苁蓉的发芽率,有助于提升肉苁蓉的品质。
本发明公开了一种应用于光电生物传感的β‑CD@CdS纳米棒及其制备方法,其步骤为:将氨基化CdS纳米棒与羧甲基‑β‑环糊精溶解在含有N‑羟基琥珀酰亚胺和1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐的PBS缓冲液中,在室温搅拌一定时间后,将所得产物洗涤、干燥,即可获得β‑CD@CdS纳米棒。本发明制备的β‑CD@CdS纳米棒具有优异的光电转换效率、良好的生物相容性和稳定性,已应用于光电DNA生物传感器的构建,并且可扩展至电致化学发光、荧光及可视化等领域,在基因检测、食品安全、临床诊断、环境检测中具有广阔的市场应用前景。
818
0
本发明公开了一种用于草履虫的培养装置,包括外壳,所述外壳上设置若干个培养皿,且所述培养皿一侧设置放置槽;所述外壳底端设置电源接口,且所述电源接口下方设置若干个滑轮;所述外壳一侧设置若干个温度仪,所述的培养皿内侧壁安装有支架;所述支架连接试管,所述的试管顶端安装有管塞。本发明所达到的有益效果是:在使用时通过抽取剂将所需检测草履虫抽取至存放皿中,通过培养皿内部存放的化学试剂对其进行检测。通过设置滑轮使装置可移动,增加装置的实用性。通过设置放置槽,使存放皿内部温度可精确调节,增加了装置的工作效益通过设置温度仪,有效散热通风,保证装置使用的安全性。本发明功能稳定。
1058
0
本发明涉及实验器具领域,特别涉及一种多活塞微量试剂加注器,包括反应杯、套装于反应杯内上部的支架、分别套装于支架内底部的活塞A、中部的活塞B、顶部的活塞C与推杆,活塞A下部预装毛细管、反应杯内预装试剂A、活塞A和活塞B之间预装试剂B、活塞B和活塞C之间预装试剂C、反应杯下部里面设有定位卡环,定位卡环内部空间构成活塞A与毛细管组件预留空间。本发明的多活塞微量试剂加注器,可在短时间内方便的完成散射比浊、透射比浊、生化比色、免疫荧光、ATP荧光以及化学发光免疫反应检测等临床诊断、实验室、食品安全监控领域中的微量样品采集、精确定量试剂加注以及各种检测功能。
1178
0
本发明公开了一种抗体取向修饰的荧光微球探针的制备方法,可实现抗体在微球表面高效、取向、牢固地固定,使Fab端充分暴露且保持生物活性。该荧光微球探针的制备方法包括:活化羧基微球表面的羧基基团,化学偶联固定蛋白A或蛋白G,特异性结合抗体的Fc端,进而通过化学键将抗体不可逆地固定在蛋白A或蛋白G基底上,最后偶联荧光分子。本发明还提供了上述荧光微球探针在免疫层析中的应用,可显著提高检测的灵敏度和试纸条的稳定性。
782
0
本发明是稀土掺杂的核壳式荧光印迹聚合物的制备方法,包括如下工艺步骤:1)铕掺杂的钒酸钇纳米粒子的制备;2)核壳式分子印迹荧光聚合物的制备;3)对应作为参照的非印迹聚合物(YVO4 : Eu3+@NIPs)的制备。本发明的优点:利用简单的湿化学法合成了稀土铕掺杂的钒酸钇纳米颗粒,并利用分子印迹技术制得了具有核壳式结构的分子印迹荧光传感器。利用本发明获得的荧光复合材料具有较好水相分散性和光学稳定性,与以有机小分子染料和量子点作为荧光信号制得的传感器相比,具有毒性小、化学稳定性高、发光强度高而稳定、stokes位移大等一系列特点。并还能实现快速识别和光学检测水溶液中残留的三氟氯氰菊酯。
1141
0
本发明公开了一种基于功能纳米材料的荧光传感器及其制备方法和应用,该传感器由氧掺石墨相氮化碳材料从堆叠结构修饰成量子点形成。本发明通过调节氧掺石墨相氮化碳的堆叠结构获得具有优异光学性能的量子点作为传感平台,由此增大的表面积有利于量子点通过π‑π相互作用非共价连接抗生素,该量子点的荧光强度可以被抗生素选择性淬灭或增强,制成功能纳米材料荧光传感器。本发明的荧光传感器,无需任何化学标记和荧光染料的添加,操作简便,灵敏度、可重复性以及稳定性都很高,可在复杂样品中实现特异性检测,具有良好的经济实用价值,有望应用于医疗、环境、食品及畜牧养殖业中抗生素的检测。
841
0
本发明属于天然药物化学技术领域,具体涉及一种巨大戟醇快速鉴别方法;依次包括如下步骤:1)将续随子醇提液回收溶剂后的上层部分进行碱水解、中和、萃取,挥干溶剂后加甲醇溶解;2)取上清液照薄层色谱法实验,以石油醚(60℃~90℃)‑乙酸乙酯为展开剂,展开;3)取出薄层板,吹干,喷以显色剂显色,加热至条带清晰;4)将薄层板置于365nm下进行观察,可见巨大戟醇为浅蓝色斑点,其他物质为橙黄色、青色、粉红色斑点。本发明具有高效、简便、准确、可靠的优点,填补了巨大戟醇特异性快速检测鉴别方法的空白,可用于巨大戟醇的快速检测。
1121
0
本发明属于生物处理技术领域,具体公开了一种评价聚氨酯降解的体系,将降解聚氨酯菌的种子液接入含有聚氨酯的无机盐培养基中培养,降解聚氨酯,再通过质量损失、电镜扫描、红外光谱检测、凝胶色谱检测、浊度和降解产物鉴定中的任意一种或几种组合的方法来评价降解效果;其中,所述的聚氨酯为水性聚氨酯或聚氨酯薄膜。本发明建立了一种评价聚氨酯降解的体系,即对两种聚氨酯底物(PU模拟物Impranil DLN和PU薄膜),通过微生物降解,基于物理表征的浊度变化、质量损失、表面降解情况等手段和基于化学表征的表面官能团变化、分子量变化、降解产物的鉴定等手段来评估聚氨酯底物的降解情况,从而能完整表征聚氨酯的降解效果。
1147
0
本发明涉及无标记G蛋白偶联受体(GPCR)的细胞筛选模型构建方法及应用,具体地说是一种无标记褪黑素膜受体亚型MT1的细胞筛选模型。本发明基于无标记细胞整合药理学技术,利用MT1稳定表达的细胞系,建立了筛选MT1受体激动剂和拮抗剂的方法。此方法还可以用于研究影响MT1受体下游通路的调节剂。本发明构建的MT1细胞筛选模型不需要荧光标记且检测过程无需额外添加指示剂,具有靶点‑通路整合响应、对细胞无损伤、检测结果可靠、灵敏度高、筛选通量高及操作简便等特点。其用于从天然产物库、代谢产物库及组合化学库中寻找MT1受体的激动剂、拮抗剂和通路调节剂,及MT1受体参与的失眠、异常生理节律、情绪障碍及肿瘤相关疾病的药物筛选。
796
0
本发明提供了一种无标记组胺受体H3的细胞筛选模型。本发明基于无标记细胞整合药理学技术,利用H3稳定表达的细胞系,建立了筛选H3受体的激动剂和拮抗剂的方法。此方法还可以用于研究影响H3受体下游通路的调节剂。本发明构建的H3细胞筛选模型不需要荧光标记且检测过程无需额外添加指示剂,具有靶点‑通路整合响应、对细胞无损伤、检测结果可靠、灵敏度高、筛选通量高及操作简便等特点。其用于从天然产物库、代谢产物库及组合化学库中寻找H3受体的激动剂、拮抗剂和通路调节剂,及H3受体参与的过敏反应、炎性反应、肥胖及运动协调相关疾病的药物筛选。
1233
0
本发明一种用于铸造远洋船舶螺旋桨的合金,由以下重量份的原料制成:Al 65.0~70.0份,Mg 35.0~48.0份,Mn 1.0~1.5份,Zn 1.0~2.0份,Si 0.35~0.45份,Cu 2.0~4.5份,Ni≤0.03份,Fe≤0.02份,Be≤0.04份;优点是:通过固溶处理、淬火处理与时效处理,能够得到具有较好的硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金锭;通过光谱仪对合金锭进行化学成分检测,保证浇注螺旋桨铸件的合金的质量;通过热等静压处理,使得螺旋桨铸件得以烧结和致密化;采用应力退火处理,减小螺旋桨铸件的变形和开裂倾向;通过渗氮处理,进一步提高提高螺旋桨铸件表面的耐磨性和耐蚀性;对螺旋桨铸件进行超声波无损探伤仪检测,保证了螺旋桨铸件的质量。
978
0
本发明公开了一种DGT装置中吸附膜的制备方法及其应用,属于环境化学领域。上述吸附膜采用琼脂糖凝胶作为水凝胶,吸附材料直接在水凝胶中合成,通过上述方法制备的水凝胶仍然保持透明,当吸附材料为氧化锆时,也不会产生褶皱。该吸附膜克服了现有针对检测含氧阴离子使用的吸附膜存在制备周期长、吸水膨胀、有褶皱影响平板扫描的问题,检测效果好,且能够大规模的生产。
1063
0
本发明公开了一种环境能量转化装置,包括能量转化单元;能量转化单元包括:正极体、负极体和中介体;正极体与负极体不相连;中介体位于正极体和负极体之间,分别与正极体和负极体接触;正极体和负极体为导电体;正极体和负极体具有不对称性;中介体与正极体、负极体不发生化学反应。本发明利用表面效应,自发将环境热能转化成电能,是一种革命性的能量获取方式,具有开创性意义,且本发明应用广泛,可作为电源和制冷器件使用,还可以作为温度传感、溶液离子浓度检测和气体、液体流速检测装置使用。
1019
0
本发明公开了一种铈离子激活的磷酸盐光学工程陶瓷制备方法与应用,属于光学工程陶瓷技术领域。该光学工程陶瓷的化学通式为NaSrLa1‑xCex(PO4)2,其中基质为磷酸盐,x为激活剂Ce3+离子的掺杂摩尔比,0.015≤x≤0.3。该光学工程陶瓷制备步骤为:先采用化学溶胶‑凝胶法制备陶瓷粉体,再采用干压、等静压方法进行陶瓷粉体净尺寸成型,最后进行固相烧结得到最终光学工程陶瓷。得到的光学工程陶瓷在近紫外光的激发下发射出~460纳米的蓝色发光,可以用来制造近紫外芯片激发的白光LED器件或用于工程陶瓷缺陷的无损光学检测方面。本发明的磷酸盐光学工程陶瓷制备简单、生产成本低。
919
0
一种基于共价有机骨架材料修饰碳糊电极的制备方法,涉及电化学传感器技术领域,将1,3,5‑三(4‑氨基苯基苯)和2,5‑二甲氧基对苯二甲醛溶于溶剂中,在醋酸催化下进行反应,取得TAPB‑DMTP‑COF;再将TAPB‑DMTP‑COF和石墨粉混合研磨后再混入石蜡油,取得混合料;将混合料压入聚四氟乙烯管中,插入导线,制得基于共价有机骨架材料修饰碳糊电极。本发明构建了一种电化学传感器用于检测铅,通过将TAPB‑DMTP‑COF修饰碳糊电极,提高了对铅的电流响应。
1033
0
本发明涉及一种吲哚啉螺吡喃比色探针,该比色探针为:1’?乙基?3’, 3’?二甲基?6?硝基螺[苯并吡喃?2, 2’?吲哚啉];吲哚啉螺吡喃比色探针的制备方法,包括步骤:1?乙基?2, 3, 3?三甲基?3H?吲哚碘盐的制备、1’?乙基?3’, 3’?二甲基?6?硝基螺[苯并吡喃?2, 2’?吲哚啉]的制备和分离纯化;吲哚啉螺吡喃比色探针的应用,比色探针用于检测溶液中的Fe3+。本发明的有益效果是:(1)吲哚啉螺吡喃比色探针合成过程较为简单,反应条件容易控制,通过简单的后处理就能够得到纯的产物,具有优良的化学稳定性;(2)探针为固体粉末,便于储存,具有良好的前景;(3)探针在乙醇溶液条件下性质稳定,存放2个月后其物理和化学性质基本不发生变化。
1066
0
本发明建立了一种融合表达小分子蛋白(多肽)的新方法,其特征是:以水蛭素为融合伴侣(标签),将小分子目的蛋白(多肽)拼接于水蛭素融合伴侣下游进行融合表达,同时在融合伴侣与目的蛋白(多肽)之间设计一个连接肽(其中包含蛋白酶或化学切割位点或可自切割的蛋白内含子intein),这样融合蛋白表达后可通过酶切或化学切割或诱导自切割释放出目的蛋白(多肽)。该法优点:(1)水蛭素融合伴侣(标签)较小(分子量7Kd),可有效增加小分子目的蛋白(多肽)在融合蛋白中所占比率,最终提高目的小分子蛋白(多肽)产量;(2)水蛭素作为融合伴侣(标签)融合后仍具抗凝活性,可方便对融合蛋白的表达和纯化进行实时检测与追踪。
767
0
一种功能性生物无机纳米复合膜的制备方法及其应用,属于材料化学以及生物检测技术领域。本发明通过基于生物适配体前修饰的金纳米粒子形成的纳米孔道,与阳极氧化铝基底复合形成异质性纳米通道结构;单次或多次重复转移金膜至同一阳极氧化铝基底,即得到功能性生物无机纳米复合膜。多次重复转移金膜至同一阳极氧化铝基底,得到多层金膜构成的生物无机纳米复合膜。本发朋的应用:基于异质性纳米通道的离子电流整流特性,通过生物适配体与目标物的杂交使纳米通道改性从而影响离子传输,以整流比作为依据定量检测目标物的方法。本发明通过控制简便,结果直观的方法,赋予了人工纳米通道智能生物传感器的功能。
1083
0
本发明公开了葡萄糖传感器、葡萄糖脱氢酶及其制备方法,该制备方法包括如下步骤:A)、葡萄糖脱氢酶的去辅基化和修饰;B)、葡萄糖脱氢酶的重组。本申请通过对葡萄糖脱氢酶进行精确的修饰,从葡萄糖脱氢酶的活性中心到其表面构建了一条电子传递通道,实现了葡萄糖脱氢酶的直接电化学,进而从根本上消除了氧气对葡萄糖检测的制约,提高了葡萄糖动态检测的准确性。
本发明属于检测材料制备技术领域,涉及一种基于磁性四氧化三铁纳米粒子光响应型分子印迹材料的制备方法及其用途;步骤如下:首先制备四氧化三铁纳米粒子和光响应功能单体MAPASA、合成二氧化硅包覆四氧化铁纳米球,然后对二氧化硅包覆四氧化铁纳米球的化学双键修饰;最后得到基于磁性纳米微球的光响应型印迹材料;本发明制备的光响应型印迹材料,可以解决释放和富集目标分子效率低的问题;该印迹材料具有与发明目标一致的明显的核壳结构;同时,本发明结合分子印迹材料与光响应智能材料的性能,成功的应用于对邻苯二甲酸二丁酯的高效检测。
1106
0
本发明公开了一种荧光变色材料,所述荧光变色材料的化学式为[PPy3Cu2I2]n,其中PPy3为三吡啶基膦。本发明还公开了所述荧光变色材料的制备方法,以及其在检测二氯甲烷蒸汽中的应用。本发明的荧光变色材料,合成步骤简单,产率高,能够大量制备;并且可以作为检测二氯甲烷蒸汽的荧光探针,具有操作简单,选择性强,灵敏度高,循环性能好稳定性好的优点。
本发明属于检测材料制备技术领域,涉及一种基于磁性四氧化三铁纳米球的新型pH响应型印迹材料的制备方法;步骤如下:首先制备四氧化三铁纳米粒子、合成介孔二氧化硅包覆四氧化铁纳米球,然后对介孔二氧化硅包覆四氧化铁纳米球的化学双键修饰;最后得到基于磁性纳米微球的pH响应型印迹材料;本发明制备的pH响应型印迹材料,可以解决基体材料表面,难以直接包覆上分子印迹聚合物层的问题;该印迹材料具有与发明目标一致的明显的核壳结构;同时,本发明结合分子印迹材料与pH响应智能材料的性能,成功的应用于对磺胺甲恶唑的高效检测。
1138
0
本发明提供了一株分泌抗TIGIT单克隆抗体的杂交瘤细胞株及其应用,所述分泌抗TIGIT单克隆抗体的杂交瘤细胞株命名为鼠抗人TIGIT单克隆抗体杂交瘤细胞系MJ12‑30,保藏在中国微生物菌种保藏管理委员会普通微生物中心,地址为北京市朝阳区北辰西路1号院3号,保藏编号为CGMCC No.45102,保藏日期为2022年02月24日。所述杂交瘤细胞分泌的抗TIGIT单克隆抗体与TIGIT蛋白具有较高的亲和力。以抗TIGIT单克隆抗体构建的TIGIT检测试剂盒灵敏度高、特异性好,在包括酶联免疫吸附、蛋白免疫印迹、免疫组织化学、流式细胞术和免疫荧光等在内的多种检测中应用效果较好。
1230
0
本发明涉及一种固态氢源反应器,采用相变材料回收利用固态储氢化学反应中的热量,将导热粒子与金属储氢材料混合后可以将导热粒子填充在金属储氢材料粒子之间,且未降低单位体积内金属储氢材料的质量,同时由于导热粒子导热性能高,实现了金属储氢材料间隙的快速导热,降低了金属储氢材料的温度梯度,在设置导热介质储罐,利用温度检测装置检测温度开启与关闭阀门,实现了吸氢时高温介质不进入固态储氢罐内,脱氢时低温介质不进入相变材料储热罐,进一步地提高了换热效率,及加氢和放氢的稳定性。
1229
0
本发明公开了一种派瑞林彩色镀膜工艺及镀膜装置,属于化学气相沉积技术领域,派瑞林彩色镀膜工艺的蒸发采用仓外染料蒸发系统和仓内染料蒸发系统,派瑞林彩色镀膜工艺解决了现有技术加工的镀膜材料不易检测的问题,同时成膜特点显现,彩色品种多样化,将彩色染料粉料升华均匀沉积在加工件上,可以清楚而直观的进行检测,该工艺简单、实用、成本低,实用性强,本工艺对各种加工产品均有明显彩色效果,同时具备派瑞林自身的保护效果。
884
0
本发明涉及一种以DNA聚合酶δ为靶标筛选化疗药物的方法,属于生物化学与细胞分子生物学领域。方法为:确定出由Calpain激活途径介导的肿瘤细胞凋亡,以DNA聚合酶δ/p12为靶标,快速评价某种化疗药物对特定肿瘤细胞的杀伤效率。优点为:结合市场可购买的检测细胞凋亡、Calpain和Caspase-3活性的常规试剂盒,通过检测DNA聚合酶δ各个亚基在不同细胞凋亡途径中不同时间的变化,以DNA聚合酶δ作为细胞凋亡的一个新靶标,方便准确地判断某种肿瘤化疗药物的药效,本发明特别适用于Calpain激活途径介导癌细胞凋亡的化疗药物筛选。
中冶有色为您提供最新的江苏有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日
2026年01月23日 ~ 24日