1196
0
本发明涉及一种K、Ti共掺杂高镍基三元正极材料的制备方法,其名义的化学通式为Li1.1‑xKx(Ni0.8Co0.1Mn0.1)1‑yTiyO2,其中x及y的值为0.02~0.08。其特点包括以下步骤:将配置好的金属盐水溶液和混合碱水溶液以一定的流速加入底液中,在氮气氛中进行恒温反应,再冷却至室温,对前躯体进行过滤、洗涤,干燥后配入锂盐、钾盐及钛化合物球磨混合,再置于氧气氛中高温固相反应。本发明制备得到的K、Ti共掺杂高镍基三元正极材料0.2C倍率下100次循环后比容量保持为195.9 mAh/g,容量保持率为96.6%以上,循环和倍率性能良好。
1085
0
一种仿生水系电解液及制备方法和在超级电容器中的应用,仿生水系电解液,由电解质水溶液和小分子量聚乙二醇(PEG)制备得到;所述的电解质为双三氟甲烷磺酰亚胺锂、高氯酸钠、高氯酸锂或三氟甲烷磺酸钠中的一种;所述的小分子量PEG为数均分子量Mn=200‑600中的一种。本发明提供的仿生水系电解液具有高的电化学稳定窗口,并且安全不燃烧、耐高温;所述仿生水系电解液的制备方法简单,使得仿生水系电解液易于制备,有利于实现规模化生产。基于本发明的仿生水系电解液组装成的水系超级电容器电压窗口高达2.5 V,在常温和高温环境下均可安全、有效地应用,且具有良好的电容行为和倍率性能。
892
0
本发明公开了一种多功能自拍杆,由伸缩杆、手机夹持装置、导热性能好的手柄、LED灯、镜子膜、蓝牙信号传送装置或者线控装置、锂电池、充电接口、开关按钮、圆形超薄电热片、拍照按钮等组成。该多功能自拍杆在手机夹持装置背面设有可翻转的镜子膜,巧妙的同时解决使用后置摄像头自拍光线不足和视觉掌控不佳问题;在手机夹持装置背面上端设有LED灯,加强了自拍时曝光量,解决了光线不强时拍照不明朗的问题;在手柄内壁设有圆形超薄电热片,解决了冷天自拍时手冰凉的问题。由于在手柄内设有锂电池,解决了该自拍杆供能问题。该多功能自拍杆结构简单紧凑、操作方便、材质轻巧、方便携带、功能齐全,特别适合单人或者情侣户外旅行携带。
1024
0
本发明公开了一种原位生长的表面配位聚合反应制备空心Co3O4纳米球的方法,包括:将无机钴盐、柠檬酸钠、尿素溶解在纯水中,加热反应,反应结束后收集产物,洗涤,干燥,得前驱体A;将前驱体A、2‑甲基咪唑分散在增黏剂中,然后加入纯水搅拌反应,反应结束后收集产物,洗涤,干燥,得前驱体B;将前驱体B放在空气中煅烧,得空心Co3O4纳米球。本发明通过加入增黏剂来控制反应体系的反应速度和黏度,使聚合反应发生在微米球前驱体表面,实现了微米球到纳米球的转变。通过改变增黏剂与水的比例能够调控颗粒粒径,并能在后续热处理步骤对空心球壳厚度调节。本发明所得纳米空心材料作为锂离子电池负极材料时表现出优异的电化学性能。
873
0
本发明涉及一种水热合成制备镍基层状结构三元正极材料的方法,特别是一种制备三元正极材料LiNi5Co3Mn2O2的方法。其特点包括以下步骤:(1)配制三元镍、钴、锰盐水-醇系混合液和草酸盐水-醇系混合液;(2)迅速混合草酸盐溶液和三元混合液,辅以强烈搅拌;(3)反应物转移至反应釜中加热条件下进行水热反应。(4)共沉淀物过滤、洗涤,干燥;(5)干燥物配锂盐混合研磨,置于马弗炉中高温固相反应,得到本发明所述的一种镍基层状结构LiNi5Co3Mn2O2三元正极材料。本发明利用草酸盐中草酸根的络合性与镍钴锰三元络合共沉淀,水热合成、烧结的方法制备得到的三元材料,首次充放电效率超过85%,0.2C放电容量达155mAh/g以上、循环性能良好。
921
0
本发明公开了一种多沟道表面修饰非晶态氧化铁纳米球的制备方法,具体步骤如下:(1)配制前驱体溶液;(2)将前驱体溶液转移至水热釜,温度设置在180~200℃,水热处理为1~6h;(3)将沉淀物反复离心、洗涤,去除多余反应离子;(4)烘干,干燥温度为80~110℃,干燥时间为8~12h。本发明采用水热法制备氧化铁纳米颗粒,利用水热反应中的熟化和氢离子蚀刻的协同效应,得到多沟道表面修饰非晶态氧化铁纳米球。将其作为锂离子电池负极材料,得到较好的电化学性能,这对氧化铁非晶材料在锂离子电池领域进一步发展中具有重要意义。
1129
0
本发明公开了一种高强度齿科修复用陶瓷复合材料,其原料组成为:SiO231~41wt%、Li2CO325~31wt%、Al2O32~5wt%、K2CO32~4wt%、(NH4)2·HPO42~8wt%、ZrSiO47~17wt%、Y2O30.5~2wt%、MgO 1~2wt%,以及着色剂CeO20.2~1wt%、TiO20.2~1wt%;所述材料为含氧化锆、二硅酸锂和残留玻璃相三种物相的陶瓷复合材料。此外,还公开了上述高强度齿科修复用陶瓷复合材料的制备方法。本发明陶瓷复合材料不仅具有高的强度和稳定性,而且具有与天然牙齿类似的色度及良好的光学透过率,有利于实现实际应用,适用于义齿移植、骨科修复及其他对陶瓷强度有特殊要求的领域。
939
0
本发明公开了一种高容量镍基正极材料电池及其放电内阻的测量方法,属于锂离子电池技术领域,其分子式为LiNi1‑x‑yMnxCoyO2,其中0<x<0.5,0<y<0.5,且0<x+y<1;所述正极材料包括下列重量份数的原料:活性材料70~90份,导电剂2~10份,粘结剂3~15份,添加剂1~8份;所述电池放电内阻的测量方法包括制作电池成品、电化学性能测试及得到电池内阻阻值等步骤。本发明所提供的镍基正极材料具有很高的放电容量,还具有高容量以及较长的使用寿命;提供的电池放电内阻的测量方法实现了实时检测电池在不同放电深度下内阻变化情况的目标,可有效的检测锂离子电池放电过程中内阻的实时变化。
1265
0
本发明提供了一种高效硅肥及其制备方法,包括以下重量百分比原料:珍珠岩75%‑92%、偏硼酸锂4%‑8%和碳酸锂4%‑17%。与现有技术相比,本发明硅肥使用主要生产原材料为珍珠岩,珍珠岩是一种非晶态氧化硅含量高,硅氧键相对较弱,来源广泛,储量丰富的矿物,而价格低廉的,生产制造时无毒无害;本发明制造硅肥工艺较为简单;成本较低,经过本发明制备过程经过多次活化,生产的硅肥具有硅元素在农田中可溶性高,农作物吸收性高等特点。
本发明公开了一种纳米复合多曲孔膜材料,它以聚酰亚胺(PI)纳米纤维非织造布为基材,基材孔隙中填充有纳米二氧化锆(ZrO2)颗粒;所述的纳米ZrO2颗粒,其直径在50-100nm之间,占纳米复合多曲孔膜材料总重量的30-50%;所述的PI纳米纤维非织造布厚度在9-38μm之间,孔隙率在60-90%之间。本发明提供的纳米复合多曲孔膜材料耐高温、抗热收缩、耐高电压和高电流冲击,抗机械撞击,适合于用作安全电池隔膜和安全超级电容器隔膜,制造各种高容量和高动力锂电池或超级电容器。本发明还提供所述的纳米复合多曲孔膜材料的制备方法,及其作为电池隔膜的应用。
967
0
本发明提出了一种适用于电磁加热设备的陶瓷器皿,其包括基体材料,该基体材料主要由锂辉石、锂霞石、石英、高岭土、氧化锌、氧化镁以及氧化钡组成。该陶瓷材料在300℃范围内的膨胀系数稳定,在该温度范围内反复加热冷却不易爆裂,可适用于电磁加热设备。本发明还公开该陶瓷材料制成的陶瓷器皿。
781
0
本发明提供了一种锡铜合金,以重量百分计,包括70‑95%Cu6Sn5、4‑25%Sn和1‑5%石墨烯。本发明的锡铜合金中含有石墨烯,能增加锡铜合金的导电性,缓冲锡与锂合金化过程中的体积膨胀,提高循环性能和减少容量衰减。
1034
0
本发明涉及一种交通路灯,尤其涉及一种可检测交通的多功能智能交通路灯。本发明提供一种能够在断电情况下自发供电,便于人们对电子产品进行充电,且能够对道路的交通进行检测的可检测交通的多功能智能交通路灯。本发明提供了这样一种可检测交通的多功能智能交通路灯,包括:底座,底座顶部中心位置设置有灯杆;锂电池,所述灯杆上侧内部一侧设置有所述锂电池;路灯,所述灯杆顶端设置有所述路灯;转动组件,所述灯杆上部设置有所述转动组件。工作人员通过按压启动按键,在第一齿轮转动与齿盘啮合的作用下,进而实现了支撑架转动180°带动交通检测装置转动180°,从而改变了交通检测装置对道路的交通进行检测的角度。
883
0
本发明属于锂硫电池技术领域,尤其涉及一种双金属磷化物镶嵌的碳中空纳米笼及其制备方法和应用,包括以下步骤:将镍钴普鲁士蓝衍生物分散在液体媒介中,制备分散液,将盐酸多巴胺加至所述分散液中,制得聚多巴胺包裹的镍钴普鲁士蓝;聚多巴胺包裹的镍钴普鲁士蓝衍生物煅烧处理,制备镍钴双金属颗粒镶嵌的碳中空纳米笼;以磷化氢为磷化剂,将双金属颗粒镶嵌的碳中空纳米笼一步磷化,制备双金属磷化物镶嵌的碳中空纳米笼;将双金属磷化物镶嵌的碳中空纳米笼、炭黑和聚偏氟乙烯制备分散液,之后将所述分散液涂敷在聚丙烯隔膜上,干燥后,制得多功能隔膜;本发明显著的提升了锂硫电池的综合性能。
766
0
本发明属于锂电池负极材料技术领域,具体涉及一种复合金属包覆碳化硅基负极材料及其制备方法和应用,该复合金属包覆碳化硅基负极材料包括改性纳米碳化硅,以及包覆于改性纳米碳化硅表面的复合金属;改性纳米碳化硅的粒径为20‑80nm;复合金属的粒径为50‑200nm;复合金属的粒径大于改性纳米碳化硅的粒径。本发明复合金属包覆碳化硅基负极材料,以改性的纳米碳化硅为核,外面包覆一层复合金属,得到的负极材料比容量高、循环性可靠、导电性能好、使用寿命长,可应用于大容量充电锂电池中。
889
0
一种基于分子组装的聚吡咙芳香聚酰胺复合膜的制备方法。本发明公开了一种制备聚吡咙/芳香聚酰胺复合膜的方法,其包含以下步骤:(1)芳香聚酰胺混合溶液的制备,包括芳香聚酰胺、有机溶剂、Zn1.5G1.5Y0.5O4.5纳米颗粒、氯化锂;(2)纺丝混合液的制备:将四胺单体和四酸单体加入(1)所得芳香聚酰胺混合溶液;(3)将(2)所得纺丝混合液进行静电纺丝,制得前驱体纳米纤维膜;(4)将(3)所得前驱体纳米纤维膜进行热处理,制得聚吡咙/芳香聚酰胺复合膜。
724
0
本发明公开了一种高透明度及高强度层合玻璃及其制作方法,它以锂铝硅酸盐无机玻璃作为外层,以聚氨酯作为中间层,以有机玻璃作为内层。其中无机玻璃经适当条件的氢氟酸择优腐蚀处理,聚氨酯及有机玻璃经适当条件的冷等离子体处理,三层经温压成型形成层合玻璃风挡。该层合玻璃的可见光透过率大于85%,层间剪切强度大于5MPa,在温度为80℃、湿度为85%的条件下湿热老化30天后层间剪切强度下降幅度小于2%。本发明制备工序简单,工艺广泛应用于工业界,工艺成本低,有良好的产业化前景。所制得的层合玻璃透明度及强度高,耐湿热老化性能优良。
1116
0
本发明公开了一种磷元素掺杂的Si/SiOx/C负极材料的合成方法,该方法包括下述步骤:将硅粉与含磷氧化剂在有机碳源和润滑剂参与条件下进行高能球磨混合实现硅材料表面氧化;所得含Si/SiOx的流变体混合物经50℃~80℃干燥后,在650℃~1000℃温度下、惰性气氛中进行烧结后得到掺杂磷元素的Si/SiOx/C负极材料。本发明所公开的改性方法,具有操作简单的优点,易于大型化;该方法制备的磷元素掺杂的Si/SiOx/C负极材料具有高首次库伦效率、高比容量以及优异的循环稳定性,适合于高能量密度锂离子电池。
本发明公开了一种六元尖晶石型铁钴铬锰镁锌系高熵氧化物及其粉体制备方法,属于高熵氧化物粉体材料领域。所述高熵氧化物化学式为(FeCoCrMnMgZn)3O4,其晶体结构为面心立方结构,空间点群为Fd‑3m。所述高熵氧化物是以Fe2O3、Co2O3、Cr2O3、MnO2、MgO和ZnO粉末按摩尔比1∶1∶1∶2∶1∶1球磨混合,经过干燥、过筛;然后在马弗炉中煅烧加热至800~1000℃煅烧时间1~3小时,煅烧后炉冷至室温,得到单相尖晶石结构的(FeCoCrMnMgZn)3O4高熵氧化物粉体材料。本发明中的制备方法具有成本低廉、生产周期短、可工业化生产、操作过程简单和能耗低等优点,且制得的粉末纯度高、粒径较小且分布均匀,可广泛应用于超级电容器电极、锂离子电池电极、电解水制氢等新型能源材料领域。
1125
0
本发明一种防浊温泉浴盐组合物及其制备方法,按照质量百分比包括如下组分:氯化锶,2~5%;氯化锂,2~5%;亚硒酸钠,1~3%;硫酸镁(七水合物),10~20%;硫酸钙(二水合物),10~25%;碳酸氢钾,10~20%;偏硅酸钠,25~42%;油茶籽粕提取物,3~10%;壳聚糖,2~5%。与现有技术相比,本发明一具有如下优势:含有锶、锂、硒、镁、钙和硅等多种矿泉重要保健元素、配方使用时稳定性好、环境耐受力强、原料成本低且贴近自然。在清洁用品与保健技术领域具有广阔的应用前景。
1045
0
本发明提供一种LVDT信号采集装置及其抗过载方法,包括壳体,壳体内包括电路板,壳体底部设有端口,电路板和端口连接。电路板上包括锂电池充放电电路、LVDT信号调制解调电路、采集存储电路和总线通信电路,所述端口上设有电源接口、通讯接口和传感器接口。锂电池充放电电路为电路板提供电源,LVDT调制解调电路为LVDT传感器提供激励电源,并将LVDT输出信号调制解调成模拟信号,由A/D采集卡采集;采集存储电路将采集的LVDT输出信号存储在FLASH存储器中,计算机通过总线通信电路对FLASH存储器中的数据进行读取分析;电路板采用环氧树脂灌封胶进行固体灌封。本发明公开一种LVDT信号采集装置及其抗过载方法,使用环氧树脂灌封胶对整个电路板进行固体灌封,加强抗过载能力。
1082
0
本发明公开了一种PTFE-NP填充的复合多曲孔膜材料,它以聚酰亚胺(PI)纳米纤维非织造布为基材,基材孔隙中填充有聚四氟乙烯纳米微球(PTFE-NP);所述的PTFE-NP,其直径在100-300nm之间,占纳米复合多曲孔膜材料总重量的30-60%;所述的PI纳米纤维非织造布是厚度在9-38μm之间、孔隙率在60-80%之间、纤维直径在0.5μm以下的电纺PI纳米纤维非织造布。本发明提供的纳米复合多曲孔膜材料耐高温、抗热收缩、耐高电压和高电流冲击,抗机械撞击,适合于用作安全电池隔膜和安全超级电容器隔膜,制造各种高容量和高动力锂电池或超级电容器。本发明还提供所述的纳米复合多曲孔膜材料的制备方法,及其作为电池隔膜的应用。
1005
0
本发明公开的一种直接硝化用竹纤维的预处理方法,属于烟火药制备技术领域。将竹纤维置于带有搅拌及加热功能的压力容器中,抽真空同时将容器加热,保持真空度不变,保温;注入碳酸锂溶液,直至竹纤维刚好浸没,搅拌后关闭抽真空,使压力恢复至常压后,打开加压阀门,使压力增加至1~5个大气压,搅拌后并将容器内压力恢复至常压;将碳酸锂溶液排出后,对容器密封并抽真空,将容器内温度升温并保温;将压力容器内部的液体排出;向容器内注入水,搅拌后排水;检测pH值直至检测到的排出水的pH处于6~7范围内为止;关闭加热,此时竹纤维素预处理完毕,能够直接用来硝化。本发明能够有效疏松竹纤维素晶体结构,从而有效提高竹纤维的直接硝化效率。
1049
0
本发明公开了一种野外露营太阳能警卫灯,其特征在于,固定装置包括底盖(2)、底座(4)、顶盖(14)、主螺旋钉(16)和中心固定轴(18);照明装置包括太阳能电池(1)、锂电池(3)、发光源和控制开关;侦测模块主要由红外动态感应器(6)构成;驱赶模块主要由微处理器、超声波发生器(12)和闪光器构成;薄膜太阳能电池(1)活动式连接在底座(4)周边,锂电池(4)安装在底座(4)下面,红外动态感应器(6)、发光源、超声波发生器(12)、顶盖(14)从下至上依次串接在中心固定轴(18)上;其优点是,以超声波和灯光的驱赶方式驱赶动物,既不伤害动物,又保护了野外露营者不受到野外动物的侵害,还能指示露营者的具体方位。
1142
0
一种碳纳米管薄膜的制备方法,包括如下步骤:(1)将碳纳米管置于石墨化炉中,抽真空且升温至2800℃以上,保温一段时间后冷却至室温;(2)以步骤(1)的碳纳米管、分散剂、粘结剂和N-甲基吡咯烷酮溶液为原料,经过超声、高速剪切或球磨等,制备碳纳米管悬浊液;(3)将步骤(2)的碳纳米管悬浊液滴加在平铺的基底上,65℃烘干,分离基底;(4)将步骤(3)的碳纳米管薄膜置于真空炉内随炉升温至1300-1500℃碳化,保温0.5-2h,冷却至室温取出。本发明所制备的碳纳米管薄膜厚度在10-20μm左右,较容易分离基底;经高温碳化改性,具有更好的使用性能;在锂离子电池中,可代替铝箔铜箔作为集流体,也可单独作为负极,具有较高的初始比容量。
1174
0
本发明公开了一种基于移动终端的小孩防丢、防抢、找回装置,包括移动终端和小孩携带装置两部分;移动终端包括控制器A、指纹采集模块、GSM模块、LCD触摸屏、蓝牙模块A、电源模块A、开关A、报警模块;电源模块A包括锂电池、充电管理电路、供电管理电路、电源按键、充电指示灯;小孩携带装置包括控制器B、外壳体、LCD显示屏、霍尔传感器、卡槽、卡口、蜂鸣器、凹槽、外壳盖、开关B、表带、磁性材料、电源模块B、蓝牙模块B、锂电池孔;本发明的积极效果是,通过移动终端和小孩携带装置可以防止小孩丢失,通过控制器A、指纹采集模块可以防止小孩被抢,通过控制器A、GSM模块能够尽快获得家人的支援,通过霍尔传感器、LCD显示屏、控制器B可以帮助找回小孩,通过报警模块及蜂鸣器进行警告。
916
0
本发明涉及一种中温烧结堇青石质耐热瓷及其制备方法,所述耐热瓷坯体的物料配方组成质量百分比为:滑石20~35%、高岭土20~35%、粘土5-15%、预烧料10~30%、锂辉石0~20%,经混合、球磨、成型,然后在1230℃~1270℃烧成、保温30min,得到堇青石质耐热瓷,所述瓷胎的热膨胀系数α为1.5~2.0×10-6/℃。本发明采用我国储量丰富、质量优良、价格低廉的滑石作为原料,并通过原料预烧的方式克服了目前堇青石质耐热瓷合成温度高、烧成范围窄的缺陷,从根本上破解锂质耐热瓷制备成本过高的行业难题,因此具有广阔的市场前景。
1230
0
本发明涉及磷铁渣回收技术领域,提供了一种回收磷铁渣中铁和磷元素的方法。本发明提供的方法包括以下步骤:将磷酸铁锂提锂后得到的磷铁渣、碳单质和含钾无机化合物进行热处理,得到热处理产物,之后将热处理产物和水进行混合,得到浆液;将浆液进行固液分离,得到含铁固体和分离液;将分离液进行浓缩,得到磷钾化合物。本发明在加热条件下通过添加含钾无机化合物和碳单质使磷铁渣中难以被还原的铁离子被还原为铁单质,同时,本发明利用含钾无机化合物中的钾元素和磷元素结合生成磷钾化合物以回收磷元素。本发明提供的方法操作简单,且不会因为采用强无机酸而造成二次污染,同时对于磷铁渣中的铁元素和磷元素具有较高的回收率。
813
0
本发明属于锂离子电池技术领域,具体涉及一种复合包覆层的高镍正极材料的制备方法,包括以下步骤:(1)将高镍正极材料和可溶性铝盐加入到去离子水中,搅拌;(2)将锂盐的碱性溶液加入到步骤(1)中的溶液中,搅拌,控制pH=8~14;(3)将步骤(2)的混合液进行抽滤,洗涤,置于烘箱中干燥;(4)将步骤(3)干燥后的正极材料与纳米包覆剂进行均匀混合,然后放入预热的通氧气的箱式炉烧结,过筛,得到具有复合包覆层的高镍正极材料。本发明通过湿法沉淀包覆,相对于纯干法包覆,其包覆的均匀性和与高镍正极材料表面的作用力更强,包覆均匀,包覆层厚度可控,改善了正极材料的综合电化学性能。
中冶有色为您提供最新的江西有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月15日 ~ 17日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日