1056
0
本发明公开了一种金属基形状记忆复合材料的制备方法,包括在待制备的相邻的金属板材之间铺设NiTi金属粉层得到叠层板材,对叠层板材进行累积叠轧处理得到复合板材,且保证累积叠轧处理过程中任一相邻的金属板材之间都铺设有NiTi金属粉层,再对复合板材进行搅拌摩擦加工处理即得金属基形状记忆复合材料。累积叠轧的每道次的压下率为40%~55%,累积叠轧的轧制道次为2~8道次;搅拌摩擦加工的旋转速度为375~1180r/min,搅拌摩擦加工的行进速度为75~235mm/min,搅拌摩擦加工的压下量为0.2~0.5mm。采用本发明层压焊合变形法通过改变不同层的金属板,再将不同颗粒大小、含量SMAs均匀平铺于板材之间,可制备出具有不同结构和性能的金属材料,使得满足不同服役环境下的新型功能材料。
810
0
一种利用可食用助剂构建自清洁与超疏水功能纸的方法,它属于造纸技术领域,具体涉及一种利用绿色助剂构建纸基功能材料的方法。本发明提出一种利用可食用助剂构建自清洁与超疏水功能纸的方法。方法:所述可食用助剂包括可食用复合物和可食用粘接剂;利用可食用粘接剂对纸和可食用复合物产生双向粘接作用,经热致重组处理,得到自清洁与超疏水功能纸。优点:具有自清洁与超疏水功能,与水的接触角大于150°。本发明主要用于利用可食用助剂构建具有自清洁与超疏水功能的纸基功能材料。
917
0
本发明公开了一种多孔隔热陶瓷材料的制备方法,属于功能材料技术领域。本发明将海藻酸钠,聚乙烯醇,水混合,静置溶胀后,加热搅拌溶解,接着加入高碘酸钠,加热搅拌混合,得混合浆料;将混合浆料,有机硅树脂,乳化剂,改性玉米淀粉乳,水玻璃,改性添加料,搅拌混合,得混合粘结剂;将黏土,改性硅藻土,混合粘结剂,水,冰晶石,硅灰石,蛇纹石搅拌混合,注模,压制成型,脱模,干燥,得干燥砖坯;利用含三甲基铝的氮气处理砖坯,得预处理砖坯;将预处理砖坯通电烧结,降温,即得多孔隔热陶瓷材料。本发明技术方案制备的多孔隔热陶瓷材料具有孔隙率高的同时力学性能优异的特点,在功能材料技术行业的发展中具有广阔的前景。
830
0
本发明提供一种通过静电组装可控合成CuS@EPO纳米材料的方法,涉及无机纳米功能材料技术领域。本发明包括以下步骤:(1)将柠檬酸钠,二水合氯化铜,九水合硫化钠混合,在89‑95℃反应20‑35 min,得到纳米CuS;(2)将1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐与N‑羟基丁二酰亚胺混合后加入羧基化吡啶酮内过氧化物,进行活化反应,加入聚丙烯胺盐酸盐,混合均匀后离心得到吡啶酮内过氧化物修饰的聚丙烯胺盐酸盐;(3)将吡啶酮内过氧化物修饰的聚丙烯胺盐酸盐、纳米CuS混合,得到吡啶酮内过氧化物修饰的CuS@EPO纳米材料。本发明在没有红外光引发光热效应,纳米药物本身依然能够进行PDT治疗肿瘤部位富集的光热试剂CuS既可以进行PTT并加速单线态氧的释放。
1154
0
本发明专利公开了一种微型螺旋结构制造方法及其制造装置,包括工位移动平台、竖直运动平台、旋转平台、细棒、牺牲层溶液容器、挤压沉积系统和牺牲层溶解溶液容器,竖直运动平台安装于工位移动平台的运动部分,旋转平台安装于竖直运动平台的运动部分,细棒安装于旋转平台的运动部分,牺牲层溶液容器、挤压沉积系统和牺牲层溶解溶液容器依次顺序放置在工位移动平台的下方,应用于满足微机电系统中对各种功能材料微螺旋结构的制造的需求,该方法通过细棒表面涂覆牺牲层、挤压沉积微螺旋结构和微螺旋结构从细棒分离的步骤制造出各种功能材料的微螺旋结构,相比于传统的微螺旋结构,具有精度高、可制造材料种类多和制造运营成本低的优点。
884
0
一种醇溶剂热制备铌酸锡纳米球的方法,属于功能材料领域。利用SnCl2·2H2O与五氧化二铌(Nb2O5)粉末混合,调成浆糊状,然后加入有机醇类(如乙醇、异丙醇、乙二醇,丙三醇等)以及表面活性剂聚乙烯吡咯烷酮(PVP),醇热处理上述混合物可制得热力学亚稳态的SnNb2O6纳米球材料。所得的SnNb2O6纳米球在光催化领域具有较好的应用前景。
773
0
本发明公开了一种导电碳纤维纸的制备方法,属于功能材料技术领域。本发明将聚烯腈基碳纤维与氢氧化钠溶液混合,浸泡,过滤,洗涤,得预处理碳纤维;将预处理碳纤维,菌液,葡萄糖溶液,水混合发酵,得发酵混合液;将改性海藻酸钠液,水溶性酚醛树脂和苯胺搅拌混合,得粘合剂;将发酵混合液,粘合剂,改性海泡石,植物精油,乳化剂,异氰酸酯,磷脂,有机酸搅拌混合,得混合浆料;将混合浆料抄造成型,干燥,炭化,即得导电碳纤维纸。本发明技术方案制备的导电碳纤维纸具有优异的力学性能和导电性能的特点,在功能材料技术行业的发展中具有广阔的前景。
900
0
本发明涉及一种TiO2/伊利石无机紫外屏蔽剂的制备方法,属于新型矿物功能材料的技术领域。本发明充分利用伊利石的高反光率和表面电荷,以高纯度伊利石为原料,在硫酸钛水热体系中,实现纳米级TiO2在伊利石表面的充分分散与复合,解决了纳米TiO2紫外屏蔽剂易团聚、附着力差等问题。该方法可显著降低生产成本,工艺流程简单,制品无需煅烧,能耗低,得到的复合粉体水相分散性好,且具有良好的屏蔽紫外线性能,可以广泛应用于纺织品整理和室外涂料等对耐候性要求高的高分子材料防护领域。
1049
0
纳米过渡金属硼化物催化剂及其在电催化水裂解制氢方面的应用,属于无机功能材料技术领域。本发明以制备高效的电解水产氢催化剂为目的,利用固相置换方法,经过煅烧后得到3d、4d、5d副族金属硼化物催化剂。该方法可以灵活的选择金属,并且通过改变煅烧时间及温度可以合成不同相的金属硼化物催化剂(如ReB2、RuB2、RuB1.1、IrB1.15、OsB2、Os2B3、MnB4、WB4、FeB、CoB等)。金属硼化物的形貌为10~100nm的纳米粒子,并且均有电催化活性。其中最优为RuB2,在酸性条件下其性质类Pt,在碱性条件下其性质优于Pt。同时该方法简便易行,方便可控,重复性好,易于规模制备。
961
0
一种农作物秸秆制备纤维素多糖类可降解高吸水剂的方法,属于农副产品综合利用和农用化学品技术领域。本发明涉及一种利用农作物秸秆为主要原料制备纤维素多糖类的高吸水剂的方法,包括从农作物秸秆中精制出纤维素基体、吸水剂合成。以玉米秸秆为例通过对其中纤维素的精制和功能改性,从而得到高吸水性能的功能材料。本发明的高吸水剂保持了吸水材料原有的吸收特性,生产工艺简单,属于生物可降解性产品;高吸水剂由于具备良好的吸水、保水性能,在抗旱保肥、沙漠绿化、植树造林、食品加工、医疗卫生等领域显示出巨大的应用前景,有效的开发了廉价资源。
794
0
本发明公开了一类自旋交叉?荧光双功能配合物、制备方法及其应用,该配合物具有式(Ⅰ)的结构式:FeL2(NCX)2?(Ⅰ),式(Ⅰ)中:NCX选自NCS?或NCSe?;L选自L1、L2、L3或L4中的一种。该配合物具有明确的单晶结构、高的热稳定性、较强的荧光发射以及热和光诱导的自旋交叉行为,利用自旋交叉和荧光的协同效应,可用热或光辐射手段来控制其荧光信号的强度,为以后荧光温度计和光开关的应用提供了无限可能。本发明配合物利用配位键结合自旋交叉中心和荧光配体,通过乙醚扩散的方法制备得到,制备方法简单易操作,产率高,晶体纯度高,得到的功能材料化学性质稳定,易于大面积推广应用。
本发明涉及一种全共轭光敏性三联吡啶衍生物4′-(4-重氮基)苯基-(2,2′:6′,2″)-三联吡啶氟硼酸盐(简称DIAZO-TPY)对多壁碳纳米管的共价键修饰后,以配位键的方式在基材表面的层层自组装,属于功能材料、纳米材料、超分子自组装化学领域。本发明首先以DIAZO-TPY对多壁碳纳米管的共价键修饰,然后将修饰过的多壁碳纳米管以配位键的形式在各种功能基材表面进行层层自组装,实现碳纳米管与基材的全共轭组装,并在其间引入金属粒子,实现其进一步功能化。本发明的方法过程简便易行,修饰均匀充分,无需特殊条件和设备,而且可以通过组装层数有效控制纳米管在基材表面的沉积量,实现性能的有效定量控制。
1119
0
本发明公开了一种高饱和磁化强度Fe3O4‑Ag复合材料及其制备方法,属于磁性功能材料技术领域。针对目前方法所制备的Fe3O4‑Ag复合材料饱和磁化强度相比Fe3O4大幅降低的问题,本发明以PEI‑DTC为粘合层修饰Fe3O4纳米颗粒,且利用调节溶液pH的方法制备尺寸小于10nm的Ag纳米颗粒。利用种子生长法制备Fe3O4‑Ag复合材料,操作简单,可控性强,重现性好,所制备得到的Fe3O4‑Ag复合材料粒径大小均一,分散性好,银粒子均匀地沉积在Fe3O4纳米粒子上,Fe3O4‑Ag纳米颗粒的饱和磁化强度为70~72emu/g。
1217
0
一种磁性液体及其制备方法,属于功能材料的领域,具体涉及磁性液体的制备。是在制备过程中以熔点为50-60℃的石蜡作为载液。由于石蜡基磁性液体常温下为固态,所以可将磁性液体处于磁场中的状态固化。制备过程中所用的具体方法等离子体活化法可以使反应周期缩短至三个小时左右,减少了能量消耗,节约了时间。
950
0
本发明属于医药化工中间体及相关化学技术领域,提供了一种绿色的喹啉化合物的制备方法。以N‑取代苯胺衍生物为原料,在酸催化剂及氧化剂的存在、无溶剂条件下,与苯乙炔或苯乙烯衍生物在80℃~160℃下反应24小时,即可得到喹啉化合物。本发明的有益效果是操作简便、条件温和、环境友好、有实现工业化的可能性,并且以较高收率得到喹啉化合物;利用该方法所合成的喹啉化合物可以进一步官能化得到各类化合物,应用于天然产物、功能材料及精细化学品的开发与研究。
771
0
本发明涉及一种高淬态韧性和宽退火温度范围的铁基纳米晶软磁合金,属于功能材料中软磁合金的制备领域,化学式为FegZraNbbPcBdCueXf,其中a、b、c、d、e、f、g均为原子百分数,a=1~5,b=1~5,c=2~4,d=4~9,e=0.5~1.5,f=0.5~2,g=(100-a-b-c-d-e-f),X为Al和Sn中的一种或两种,制备过程是:首先将各组分熔炼成均匀的母合金,然后将母合金加热到高温熔融状态通过喷嘴,喷射到铜辊上进行快速冷却制备非晶薄带,最后将淬态非晶薄带在一定温度下进行晶化退火得到纳米晶软磁合金。本发明铁基纳米晶软磁合金具有优异的淬态韧性和宽退火温度范围,能够有效降低快淬以及卷绕成铁芯等工艺过程中的废品率。可取代现有的硅钢片和铁基非晶、纳米晶软磁合金应用于电力变压器、互感器等领域。
1135
0
本发明属于多孔框架材料技术领域,涉及一种分离CO2的金属有机框架材料及其制备方法,将0.2mmol将铜盐、0.1mmol有机配体、5mL二甲亚砜、2mL乙醇、0.02~0.08mL氢碘酸混合均匀后装入带盖子的玻璃瓶中,在90℃晶化1天得到结晶性良好的块状绿色晶体;再所得块状绿色晶体用乙醇洗涤,并在室温下干燥,即制备得到无机‑有机杂化多孔金属有机框架晶体化合物;制备的多孔金属有机框架晶体化合物为分离二氧化碳混合气体的新型功能材料,其分离效果好,合成原料简单易得,方法简单,操作方便,重复性好。
本发明涉及的一种以蒸汽爆碎植物秸秆固态发酵制备石质边坡绿化基材的方法:首先将整株植物秸秆切短、浸润、进行蒸汽爆碎,制得蒸汽爆碎处理的秸秆原料;然后进行复合菌系固态发酵;发酵完成后按比例添加粘土和必要的功能材料,拌匀后常温干燥制得以蒸汽爆碎植物秸秆固态发酵制备的石质边坡绿化基材。制得产品中,有机质含量>50%,腐殖酸含量>10%,有效活菌总数>2亿/克。不仅能够替代以往大量使用的泥炭,具有生态肥料的功效,而且还具有防治植物病害的能力,能够满足边坡创面恢复对涵养量和持水能力的要求。
1206
0
本发明涉及一种含薁类结构水溶性菁染料,其分子结构具有如下所示通式:制备时,在缩合剂作用下,1,3-二甲酰基薁类衍生物与取代的1-烷基-2,3,3-三甲基吲哚盐进行缩合,从反应混合物中得到含薁类结构的菁染料,通过纯化精制得到目的产物。该类染料由于具有薁类结构及磺酸基、羧基等水溶性基团,增加了光稳定性,提高了荧光性能,可以应用于激光防护、荧光标记、光电功能材料等领域。
895
0
本发明属于功能材料技术领域,特别是涉及常温常压纳米自清洁玻璃的离线和在线生产技术,尤其是常温自清洁钢化玻璃的制备方法。本发明将首先进行具有可见光活性的纳米涂料预结晶,然后将预结晶的涂料涂敷于玻璃表面,利用钢化玻璃制备过程中必须经过700℃瞬时高温处理的条件快速形成结晶,在钢化的同时实现玻璃表面的超亲水性和光催化活性。玻璃表面的纳米自清洁涂层经过瞬时高温后将更加牢固,提高了自清洁涂层的使用寿命。
784
0
本发明属于吸附分离功能材料制备技术领域,具体涉及一种表面光引发制备高密度冠醚位点多孔吸附剂的方法;步骤为:首先制备获得2AM12C4和PVBC;将PVBC加入水与DMF混合液中,超声溶解后加入无水Na2S2O3,经水浴、乙醇清洗、真空烘干,获得PVBC‑S2O3,再与2AM12C4加入石英瓶中,密封后,通氮气置于紫外光照射条件下,在PVBC‑S2O3的表面引发单体2AM12C4的接枝聚合,最后,经乙醇清洗、真空干燥获得PVBC‑g‑PCE;本发明通过4‑VBC参与聚合使得基底材料本身带有大量的氯甲基,避免了后续修饰造成的结合不稳定等现象,简化了制备流程,提高了吸附剂的动力学性能和吸附容量。
本发明提供一种具有良好非晶形成能力和热稳定性的稀土钆基GD-CO-AL-ZR大块金属玻璃及其制备方法,属于金属材料科学与技术领域。本发明钆基大块金属玻璃包含组分及其原子百分比为:52.5~53.8%钆、16.5~20.5%钴、25.0~30.0%铝、1.0~3.0%锆。本发明还提供了GD-CO-AL-ZR大块金属玻璃的制备方法,具体为:将金属钆、钴、铝、锆按规定原子百分比配料,通过电弧熔炼的方法直至合金熔化均匀,获得GD-CO-AL-ZR的母合金铸锭,然后采用铜模吸铸法获得最大直径为8毫米的大块金属玻璃。本发明提供的GD-CO-AL-ZR大块金属玻璃,具有很高的非晶形成能力和热稳定性,在磁致冷功能材料及结构材料方面有广阔的应用前景。
1128
0
一种基于高机械化合成含稀土光电功能铝酸盐的新途径,属于无机光电功能材料的制备领域。本发明基于高压消解‑冷冻干燥‑高温煅烧三步骤,将原料铝源、稀土氧化物和其他原料按比例称量,并混合适量去离子水加入到高压消解罐的聚四氟乙烯内衬中。经过高压消解和冷冻干燥过程,无需后处理直接得到均匀性良好的超细含稀土铝酸盐前驱体。随后,通过管式炉高温煅烧过程,可获得用于电子发射领域和光功能材料领域的含稀土光电功能铝酸盐。该工艺机械化程度高,所有工程量均由设备完成,最大程度的强化了产品的质量控制。同时高压消解过程使高密度差的原料充分混合均匀,消除了传统水洗微溶物流失和热干燥前驱体分布不均匀的现象。
1037
0
本发明属于天然沸石材料改性技术领域,具体涉及一种高硅高水热稳定性中孔USSTI沸石及其制备方法。该沸石以天然STI沸石为原料,经铵溶液热交换后得到NH4-STI沸石,再经不同温度、不通流量饱和水蒸汽处理后得到高硅高水热稳定性USSTI沸石。本发明所用天然矿物资源品位高、储量丰富、开采成本低,同时制备高硅高水热稳定性USSTI沸石的方法简便,成本较低,作为催化剂,吸附剂及功能材料有非常广泛的应用前景。
993
0
本发明公开了一种导电三元复合材料及其制备方法和应用,属于无机杂化功能材料技术领域。将BC膜浸泡于FeCl3水溶液中,通过原位水解法将含铁类活性物质前驱体负载于BC纤维表面,形成水解复合材料;利用氧化聚合法将PEDOT包覆在水解复合纳米材料表面,形成PEDOT包覆的纳米纤维复合材料;最后经高温碳化得到导电三元复合材料。本发明在仅使用FeCl3作为铁源时将含铁类物质原位复合到BC纳米纤维表面,在接近室温的环境下进行,该过程便捷、环保,符合绿色化学的理念,最终获得了高比容量和高循环稳定性的锂离子电池负极材料。本发明所使用的纤维素包括但不限于细菌纤维素,也包括其它植物纤维素和动物纤维素及它们的衍生物。
1078
0
本发明提供了一种钛酸钡纳米粉体的制备方法。该方法是先将可溶性的钡盐加入到H2O2溶液中,不断搅拌,并用氨水调节溶液的pH值,经静置、过滤、洗涤、真空干燥,得前驱体BaO2·H2O2粉未;然后,将BaO2·H2O2和H2TiO3混合研磨,先加入KOH和KNO3作熔剂,再加入无水乙醇,研磨,超声处理,干燥除去乙醇后,煅烧,冷却后,用去离子水溶解,离心分离,并用去离子水洗涤;将样品放入稀HNO3溶液中浸泡除去杂质,离心分离,洗涤、干燥制得粒径约为15~40nm的钛酸钡纳米粉体。该方法制得的钛酸钡纳米粉体粒径小、颗粒大小分布均匀,具有煅烧温度低、生产工艺简单、生产过程安全、产品颗粒不易团聚、产品纯度高、生产效率高、实施成本低的优点,可广泛用于各种无机纳米功能材料的制备。
本发明公开了一种基于MOF模板法合成的TiO2负载的棒状α?Fe2O3纳米异质结构气敏元件及其应用,其是利用MOFs为模板合成的纳米材料异质结构,属于纳米功能材料制备领域。其具体是采用溶剂热法制备MIL?88A纳米棒;然后将MIL?88A纳米棒溶解在无水乙醇中,并加入氨水调节pH;再加入一定量的钛酸四丁酯进行水浴反应;所得产物离心干燥后经空气煅烧,得到TiO2负载的α?Fe2O3异质结构纳米粉末;最后在所得纳米粉末中加入松油醇研磨均匀后,将其涂抹在陶瓷管上,并置于马弗炉烧结,制得所述气敏元件。该气敏元件具有低高灵敏、响应快、高稳定性、高选择性的气敏特性,可用于制备半导体气敏传感器。
976
0
本发明属于聚合物基复合材料技术领域,涉及一种适用于建筑物外墙泡沫塑料保温工程的饰面材料,即一种膨胀型柔性防火饰面材料及其制备方法。本发明的技术方案为:一种共混聚合物乳液,通过下述方法制得:在水性聚氨酯乳液中加入硅丙共聚乳液,通过复合共混制得共混聚合物乳液。膨胀型柔性防火饰面材料是新型的功能材料,材料成分遇火燃烧会自行膨胀,并形成稳定的结构碳层,膨胀的结构碳层会隔绝热量传递,具备阻火作用。材料可以制备具有一定柔韧性的制品,便于施工应用,可以替代瓷砖用于防火型的建筑外饰层。
933
0
缩颈罩玻璃管插入热管的真空集热元件,由一个带传热缩颈段的罩玻璃管和一支置于罩玻璃管内部、其冷端插入传热缩颈段、带翅片吸收体的热管组成,其特征分别在于热管冷端和传热缩颈段之间采用配合连接;或者热管冷端和传热缩颈段之间保留间隙,在间隙中设置传热物体或者充填功能材料包括胶粘材料和热固化材料。本实用新型的有益效果包括:热管冷端与传热缩颈段配合连接省料。在热管冷端和传热缩颈段之间保留间隙并在间隙中设置传热物体,可采用简单的设备进行制造,比采用大件弹性金属件传热的设计提高集热效率节省材料。充填功能材料进行传热和连接有利于降低材料成本并提供了更多的技术路线。结合附图给出一个实施例。
本发明公开了一种链霉亲和素标记的结合藻红胆素(PEB)的藻蓝蛋白ALPHA亚基类荧光蛋白质的制备方法,是通过应用藻蓝蛋白ALPHA亚基裂合酶催化藻红胆素(PEB)与链霉亲和素标记的藻蓝蛋白ALPHA亚基类脱辅基蛋白共价结合,制备链霉亲和素标记的结合PEB的藻蓝蛋白ALPHA亚基类荧光蛋白质。本发明的方法应用生物过程生产链霉亲和素标记的结合PEB的藻蓝蛋白类ALPHA亚基荧光蛋白质,是一种环境友好的生产方法。链霉亲和素标记的藻蓝蛋白ALPHA亚基类荧光蛋白质能应用于生物学和医药功能材料领域,特别是应用为生物学和医学检测领域的荧光探针。
中冶有色为您提供最新的有色金属功能材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日