1221
0
本发明公开了一种锂离子三元正极材料的锂位氧位共掺杂的方法,通过向锂离子三元正极材料中混入固体的含有目标阴阳离子物质,再使用高能球磨使其完全混合均匀,低温烧结后即可得锂氧位共掺杂的锂离子三元正极材料;对锂位的掺杂可以扩大锂层通道,降低锂离子脱嵌的阻力,提高其倍率性能,而对于氧位的氟掺杂可以改善其循环稳定性;与常规的液相共沉淀方法相比,使用该方法对三元正极材料进行掺杂改性,流程短、工艺简单、成本低廉,可以大规模改性处理正极材料,适用于工厂规模化生产。
本发明公开了一种六氟锆酸锂和碳共包覆磷酸铁锂复合材料、其制备方法和用途。所述复合材料包括:磷酸铁锂内核,以及包覆在所述内核表面的包覆层,所述包覆层由六氟锆酸锂和热解碳组成,所述复合材料中包括至少两个不同的粒度范围的复合材料颗粒。本发明的方法包括:1)将锂源、磷铁源、碳源和六氟锆酸锂制浆、研磨活化;2)利用喷雾干燥机造出至少两个粒度范围的球体;(3)烧结,得到六氟锆酸锂和碳共包覆磷酸铁锂的复合材料。本发明的方法可明显提升材料的压实密度,而且采用该复合材料作为正极活性物质制成的全电池具有优异的首圈容量、循环性能和低温性能。
1019
0
本发明涉及一种动力锂电池组的温度调节系统及动力锂电池组,该系统包括:内置若干锂电池单元的电池箱体,在所有锂电池单元的表面涂布导热涂层;填充在电池箱体内、所述锂电池单元之间的相变储能微胶囊;以及,插置于所述锂电池单元之间的若干热管,每一个热管的周壁均与相变储能微胶囊接触,每一个热管的两端分别与电池箱体的上盖、底板紧密接触。其将储热密度高、化学稳定性好的相变储能材料与热管技术整合,不仅能充分发挥相变材料的吸热性能,而且能弥补相变材料导热系数不高、储能速率偏低的缺陷,在动力锂电池组大功率、大电流放电下也能快速响应,控制锂电池组安全工作在最佳温度范围内。
987
0
本发明公开一种锂离子动力电池电解液及锂离子二次电池,其中电解液包括如下质量百分比的组成:锂盐混合物10%‑20%、耐高压的有机溶剂73%‑88.5%、稳定剂0.5%‑3%及辅助添加剂1%‑4%;本发明电解液的锂盐由多种锂盐构成,由于多种锂盐的协同作用,提高了六氟磷酸锂的稳定性;有机溶剂中含有热稳定性更高、氧化电位更高的腈类溶剂、砜类溶剂和氟代溶剂,使得该电解液可以在较高温度和电压下工作;电解液中添加了稳定剂,可以吸收电解液中的水,减少电解液中HF的生成,同时成膜添加剂的引入可以使电池的SEI膜更加致密和稳定,使电池具有更好的循环性能。
929
0
本发明提供了一种从锂溶液中分离锂与三元金属离子M的装置,包括装置本体,所述装置本体上设有若干个进料口,位于所述装置本体上端侧壁的溢流口和位于所述装置本体底部的卸料口;与所述装置本体密封连接,用于在所述装置本体内搅拌的搅拌装置;和包裹于所述装置本体外侧,用于加热或者冷却所述装置本体的控温装置;其中,所述从锂溶液中分离锂与三元金属离子M的装置用于使锂溶液中三元金属离子M形成球形氢氧化物的沉淀,使锂溶液中的锂与三元金属离子M分离得到母液。与现有技术相比,该装置的结构简单,降低了生产成本及操作要求。
1123
0
本发明提出了一种锂离子电池复合电解质及其制备方法和锂离子电池,所述锂离子电池复合电解质包括硫化物固态电解质以及可发生塑性变形的有机锂盐,所述有机锂盐包覆在硫化物固态电解质颗粒的表面和/或填充在硫化物固态电解质颗粒的间隙中。本发明提出的复合电解质,可发生塑性变形的有机锂盐因为容易发生塑性变形,在复合过程中会很好的包覆在硫化物固态电解质颗粒的表面和/或填充在硫化物固态电解质颗粒的间隙中,因此能够间接实现硫化物固态电解质颗粒与颗粒之间的“面接触”,还能有效地降低无机固态电解质颗粒之间以及电解质与正极以及负极之间的界面影响;另一方面,所述可发生塑性变形的有机锂盐对硫化物固态电解质的离子导电性能具有很好的促进作用。
748
0
本发明公开一种复合锰酸锂材料及其制备方法与锂离子电池,包括步骤:将钒源加入到草酸溶液中搅拌溶解,然后加入磷源、锂源,接着加入锰酸锂搅拌均匀,随后逐渐滴加乙二醇、乙二胺,于150~200℃反应2~4h,抽滤、洗涤后得前驱体NLiMn2O4/(1?N)Li3V2(PO4)3/C;将前驱体在80~120℃真空干燥6~10h,干燥后研磨均匀,然后惰性气氛下将研磨后的粉体在700~800℃烧结8~15h;随炉冷却,即得复合锰酸锂材料NLiMn2O4/(1?N)Li3V2(PO4)3/C;其中0.7≤N< 1。本发明改善锰酸锂材料的循环性能和高温性能,可同时改善锰酸锂的导电性、倍率性能。
888
0
本实用新型公开了一种锂离子电池壳,包括壳体,所述壳体是一面开口的长方体,在所述壳体底部设有绝缘层。本实用新型还公开了利用上述锂离子电池壳的锂离子电池,该锂离子电池一方面避免了设置在电池壳内部的电芯和壳体直接接触而形成短路现象,另一方面省去了在电芯底部包高温胶纸的步骤,降低了成本,同时也改善了电芯底部吸液能力,提高了电池循环性能及安全性能。
1016
0
本实用新型公开了一种以锂电池、铁锂电池或聚合物电池为基础电源的多功能电源,本实用新型以体积小重量轻效率高的锂电池、铁锂电池或聚合物电池为基础电源,通过非隔离DC/DC变换器产生5V、9V、12V、19V、24V或其它特定电压的直流电源,通过高频逆变器产生纯正弦波220V/50HZ(或110V/60HZ)交流电源,输出多种直流电源和纯正弦波电源。本实用新型为远离电网或发电机的各种电子电器设备提供优良、适用、轻便的交直流电源,使之正常工作。本实用新型将是抢险救灾、通信、传媒、军队、警察、司法、科考、探矿、考古、医疗、旅游、探险等领域重要的电源设备。
一种正极活性材料、正极极片、锂离子软包电芯、锂离子电池包及其应用,正极活性材料包括三元单晶型正极活性材料和橄榄石型正极活性材料按一定比例混合的混合物,三元单晶型正极活性材料化学式为LiNixCoyMn1‑x‑yO2,橄榄石型正极活性材料化学式为LiMPO4,其中,M为Fe、Mn、Mg、Al、Ti元素中的一种或多种。本发明通过将三元单晶型LiNixCoyMn1‑x‑yO2和橄榄石型LiMPO4的混合物作为正极活性材料(正极活性物质),与传统的二次球型高镍材料相比,单晶型的三元材料在安全性、循环稳定性上更有优势;并且,单晶型的三元材料与安全性更高的LiMPO4进行混合使用,使得锂离子电池包的安全性及循环稳定性得到进一步提升。
1074
0
本发明涉及一种电池壳体、锂离子电池及锂离子电池组,所述的电池壳体包括外管体、内管体、第一盖板和第二盖板,所述内管体设于所述外管体内,所述第一盖板和所述第二盖板分别盖设于所述外管体的两端,所述第一盖板设有第一开口,所述第二盖板设有第二开口,所述内管体的一端与所述第一开口的周缘连接,另一端用于与所述第二开口的周缘连接,以使所述内管体的内部与外界连通形成散热通路,所述外管体、所述内管体、所述第一盖板和所述第二盖板共同围蔽形成用于容置电芯的容置腔,上述电池壳体的散热性能较好,可使大容量锂离子电池在充放电过程中能快速有效地散热,保证使用安全。
865
0
本发明公开了用于锂离子电池的正极材料、正极极片和锂离子电池。其中,正极材料具有如式(I)所示的组成,LiNixCoyAl1‑x‑yO2···(I)式(I)中,x和y同时满足:0.8≤x≤0.92,0.05≤y≤0.2,1‑x‑y>0。该正极材料通过采用优化组成的镍钴铝酸锂材料,具有优异的高压循环稳定性和更高的能量密度。
999
0
本发明涉及锂电池领域,公开了一种锂离子电池组以及其连接成组方法。该电池组包括:复数个串联的电池,在各电池的第一宽度端部分别伸出有正极耳、负极耳,各电池的第一宽度端部的顶部对齐;第一电池为任一电池,第二电池为任一与第一电池面对面相邻对叠的电池,第一电池的正极耳与第二电池的负极耳之间固定连接有金属带,正极耳、负极耳分别由各宽度端部向外弯折,正极耳、负极耳的末端以及金属带共同位于第一电池与第二电池的相互层叠正对面之间空隙,金属带在第一电池与第二电池之间位置对折,正极耳与负极耳相互层叠。应用该技术方案更易于实施,得到的锂离子电池组结构简单。
776
0
本发明提供一种锂离子电池的极片结构及锂离子电池,所述极片结构包括集流体与极耳,所述极耳与所述集流体之间同时设有隔离结构与具有导电作用的固定结构,所述隔离结构用于将所述极耳与所述集流体隔开,所述固定结构用于将所述极耳与所述集流体固定,所述极耳与所述集流体通过所述固定结构导电。本发明降低了极耳对集流体的损坏,提高了锂离子电池的使用安全和使用寿命。
884
0
本发明提供一种锂离子二次电池用聚酰亚胺隔膜以及锂离子电池,其特征在于,沿本厚度方向上,所述聚酰亚胺隔膜具有第一表面和第二表面,且所述第一表面至第二表面由曲折孔道相连通,曲折孔道由贯通孔相互连接形成;采用压汞法测得该聚酰亚胺隔膜的孔径分布为,直径为40-280纳米的孔的孔体积占总孔体积的78%以上。本发明提供的聚酰亚胺隔膜的孔直径分布均匀,多孔隔膜上分布有大量小孔,孔与孔之间曲折连通,从而使由该隔膜作为电池隔膜而制成的锂离子电池的使用寿命提高,此外本发明提供的隔膜还具有较高的热稳定性,大大提高了电池的安全性能。
768
0
一种锂电池极片的改造方法和锂电池,本发明基于一个创新性的发现,即现有的锂电池正极片结构,主要有活性材料、导电材料和高分子聚合物的PVDF(聚偏氟乙烯)胶粘剂,这其实就包含了PPTC(高分子聚合物正温度系数)核心结构,因此,就会有PTC(正温度系数)效应,只是因为这个效应比较弱,不能给电池足够的保护。本发明正是基于这一发现,对锂电池正极片结构进行PPTC结构强化,将锂电池正极片结构改造为足够强的PPTC,组成锂电池后,可以想象为整个电池正极,充满了PPTC单元,所有正极活性材料,都被PPTC单元包围着,从而能够对电池提供更好的热失控保护。
867
0
本发明涉及锂电池负极材料领域,特别是涉及一种含锂硅氧化物复合负极材料,所述含锂硅氧化物复合负极材料为核壳结构;所述核壳结构包括核层和壳层;所述核层包括纳米硅、Li2SiO3和Li2Si2O5,所述壳层为包覆的导电碳层。本发明提供一种实现可逆容量最大化提升、循环寿命长的含锂硅氧化物复合负极材料和锂离子电池;本发明还提供了一种工艺简单,环境友好无污染的含锂硅氧化物复合负极材料的制备方法。
746
0
本发明公开一种锂离子电池多层包覆钛酸锂负极材料及其制备方法,负极材料包括有内核、第一包覆层和第二包覆层;该内核为钛酸锂;该第一包覆层为氧化物,且包覆量为整个负极材料质量的1%~5%;该第二包覆层为碳材料,其包覆量为整个负极材料的1%~5%。制备时,通过先用氧化物包覆钛酸锂,再进行一次高温处理,然后进行碳包覆,再进行二次高温处理,所形成的包覆物具有包覆层致密而且均匀的特点,更有效地覆盖在钛酸锂颗粒表面,抑制胀气的产生,并且碳材料的高导电性可以有利于钛酸锂材料的倍率、循环、首次效率等电化学性能发挥;本发明制备方法工艺简单,生产成本较低,制备过程简单易行。
1127
0
一种锂镍锰钴氧锂离子电池正极材料的制备方法,其中,该方法包括将镍锰钴氢氧化物与粘合剂进行混合、造粒和一段烧结,得到一段烧结产物,然后将一段烧结产物与锂化合物混合进行二段烧结。采用本发明提供的方法,即使镍锰钴氢氧化物前驱体的平均粒度小于1微米也能制得平均粒度大于7微米的球形正极材料,大大降低了对前驱体平均粒度的要求,从而极大地缩短了前驱体的沉淀时间。而且,由于采用本发明方法制得的二次粒子间存在微小的孔隙,有利于电解液的渗入,增大了接触面积,从而提高了电池的比容量和循环稳定性。
970
0
一种锂离子电池正极材料的镍钴锰酸锂前驱体 的制备方法,它包括如下步骤:a.将镍、钴、锰的硝酸盐和一 定量的硝酸铵配制成第一混合溶液;b.将适量的氨水添加到冷 却后的氢氧化钠溶液中形成第二混合溶液,并在反应器中少量 的纯水中配以同等氨浓度的氨溶液作底液;c.向反应器的底液 中连续添加第一混合液和第二混合液,并进行搅拌;d.反应后 所产生的氢氧化物沉淀用含氢氧化锂、氢氧化钠或氢氧化钾中 的一种物质所配制的洗液清洗,洗液的PH值控制在10~10.5 之间;e.将洗涤后的镍、钴、锰的氢氧化物沉淀置于烘箱中干 燥,即得到供下一步烧结用的前驱体。本发明易于控制前驱体 的粒径和粒度分布,制备速度快,可连续不断地投入原材料和 产出制备 Li1.05NixCoyMn1 -x-yO2所需的 前驱体,且易于实现产业化。
840
0
本发明公开了一种电动汽车用动力型锰酸锂电池中锰和锂的回收方法,包含以下步骤:1)将废旧锂离子电池放电后,拆解去掉外壳,得到正极部分;2)除去正极部分的有机粘合剂,得到动力型锰酸锂正极材料;3)在上步得到的无机材料中加入酸和还原剂,使其溶解并过滤除去不溶物乙炔黑,得滤液;4)以上步得到的滤液为电解液,钛片为工作电极,石墨棒为对电极,控制恒电流密度300-800A/m2,温度为60-80℃,进行电化学沉积5-8h,得到二氧化锰固体;5)调节上步余液的pH为9-10,过滤得到沉淀物和滤液;6)在上步得到的滤液中加入浓度为30-40wt%的碳酸钠溶液,直至沉淀完全,过滤,洗涤,干燥,得到碳酸锂固体。本发明利用电化学沉积法回收MnO2,绿色环保,同时回收了高纯度碳酸锂固体。
1097
0
本实用新型提供了一种锂离子电池用密封塞和锂离子电池,涉及锂离子电池的技术领域,所述锂离子电池用密封塞,包括密封塞主体和负极柱,所述密封塞主体上设置有贯穿所述密封塞主体的负极柱孔,所述负极柱穿设于所述负极柱孔中,所述负极柱的一端的端部设置有负极柱帽,所述负极柱帽朝向电芯,用于与集流盘焊接。本实用新型提供的锂离子电池用密封塞,通过将负极柱设置有负极柱帽的一端的端部朝向电芯,以增大负极柱与集流盘焊接面积,减少虚焊和漏焊现象,同时有效避免了因电池壳内部气压过大而使得负极柱被顶出密封塞造成的漏液或断路问题。
830
0
本实用新型公开一种通过含锂废水回收锂盐的处理装置,包括底座、第一过滤机构、调节沉淀机构、过滤浓缩机构、沉淀回收机构,所述底座顶部一侧设置有过滤浓缩机构,所述过滤浓缩机构顶部一侧安装有调节沉淀机构,所述调节沉淀机构顶部一侧设置有第一过滤机构,所述底座顶部另一侧安装有沉淀回收机构;采用上述结构后,使得该处理装置,能够快速从含锂废水中回收锂盐,同时通过设置沉淀回收机构,能够对沉淀物碳酸锂进行自动回收,避免人工操作可能造成的安全事故,同时节省劳动力,进而提升回收速率。
1090
0
本发明提供了一种钝化锂粉及其制备方法、添加该钝化锂粉的正极材料及电池,该钝化锂粉包括锂粉颗粒以及包覆在锂粉颗粒表面的金属层,所述金属层中的金属为铜、镍、铁、锌、铅、银、镉、钴中的一种或几种,所述金属层中的金属的标准电极电位介于-0.7~1.3V之间;本发明提供的钝化锂粉,能够使得锂粉颗粒在空气长时间中稳定存在。将此钝化锂粉添加到电池的正极材料中,能够可控的达到补锂的目的,制备得到的电池具有较高的能量密度。
1154
0
本发明公开了一种自熄灭的锂离子电池用复合粘结剂及锂离子电池。所述复合粘结剂是将聚磷酸铵和聚丙烯酸加入溶剂中配置成混合溶液,然后进行热处理后得到。本发明将聚磷酸铵的阻燃特性与聚丙烯酸能够抑制体积膨胀的特性相结合,使制备得到的锂离子电池在循环过程中于表面形成稳定的SEI膜,在提高电池阻燃性的同时,对锂离子电池的电化学性能也有较大提升;除此之外,聚磷酸铵和聚丙烯酸在受热后,由于氢键的相互作用,可以发生交联反应,形成三维网状结构,使电池的结构稳定性也有着显著提升。
937
0
本发明涉及锂电池安全保护领域,具体涉及锂电芯抗静电压敏胶及制备方法及锂电芯抗静电保护膜。一种锂电芯抗静电压敏胶,包括10~50份的丙烯酸月桂酯、1~5份的4‑甲基丙烯酰氧基乙基偏苯三酸酐、20~70份丙烯酸‑2‑乙基己酯、1~10份的甲基丙烯酰氧乙基三甲基氯化铵、1~5份的丙烯腈、1~5份的丙烯酸四氢呋喃酯、0.001~0.5份的自由基引发剂过氧化二苯甲酰、0.001~1份的三氯化铁、0.01~2份的三苯基磷、50~200份的有机溶剂、0.2~3份的多官环氧树酯和0.01~1份的固化促进剂。本发明解决了传统丙烯酸酯压敏胶耐墨性能差的问题,消除低聚合物对油墨二维码的溶解。增强丙烯酸酯压敏胶的抗静电性能,消除贴合不良现象。
989
0
本发明公开了一种磷酸亚铁锂高功率动力锂离子二次电池及其制备方法,磷酸亚铁锂高功率动力锂离子二次电池的正极片中的正极复合集流体包括正极金属箔和附在其上的导电碳纤维毡,导电碳纤维毡上涂布有能渗透到金属箔上的正极合剂,正极合剂包括正极活性物质、正极导电剂和正极粘合剂。本发明上述电池的制备方法包括正极片制备,正极片制备包括正极配浆、复合涂布、干燥、滚压、制片,正极复合集流体是在正极合剂涂覆到正极金属箔上的同时将碳纤维毡复合进去。本发明制备方法工艺简单、制备的电池降低了内阻和充放电过程中的发热量,提升倍率性能和比能量、也提高电池的安全性和使用寿命。
1139
0
本发明提供的超薄锂离子电池集流体,该集流体为金属复合箔,该金属复合箔至少包括易锡焊材料制成的易锡焊层以及集流导电层,集流导电层为铝层、铝合金层、钛层或钛合金层或铬层中的一种;易锡焊层和集流导电层复合成一体。由于金属复合箔包括易锡焊层以及集流导电层,其可以兼做超薄锂离子电池的包装膜,易锡焊层可以超声波点焊、激光点焊、交流点焊、直流点焊或锡焊,拓展了焊接的方式,可焊性好,方便用户使用;采用锡焊时,无需要焊接转接片,工序减少,合格率高,人工成本低。本发明还提供了使用上述超电池集流体的超薄锂离子电池及其制造方法,本发明提供的超薄锂离子电池可以有效地解决现有技术存在的焊接问题和开裂问题,具有很好的经济效益。
996
0
本实用新型涉及锂离子电池技术领域,公开了一种锂离子圆柱电芯正极集流体连接结构及锂离子电池;本实用新型的锂离子圆柱电芯正极集流体连接结构包括电芯外壳和正极盖板,电芯外壳包括圆柱筒和固定板,圆柱筒的两端开口,正极盖板密封设置在圆柱筒一端的开口处,正极盖板与圆柱筒导电连接,固定板靠近正极盖板固设在圆柱筒内,固定板的周边与圆柱筒的内壁导电连接;固定板背离正极盖板的一面设有环形槽和多个凹陷部,环形槽与固定板同心设置,并设置在固定板与圆柱筒的连接处,凹陷部设置在环形槽围成区域内,且环绕固定板的中心间隔设置;固定板背离正极盖板的一面与卷芯的正极集流盘直接连接,其能够简化正极集流体结构连接组装的操作过程。
1179
0
本实用新型涉及一种复合锂金属负极与锂二次电池,属于二次电池技术领域。本实用新型的复合锂金属负极包括金属锂和具有空腔的三维骨架;所述三维骨架包含导电层和包裹于所述导电层外的绝缘层,所述绝缘层与所述导电层紧密贴合;所述三维骨架的边缘为开孔结构;所述金属锂填充于所述三维骨架的空腔内且与所述导电层紧密贴合。本实用新型的复合锂金属负极既可延迟锂枝晶出现时间,也可以控制枝晶生长方向,从而使得锂枝晶的生长受到抑制和调控,电化学充放电过程中安全隐患消除;并且,由于绝缘层包裹于导电层的外部,锂金属在操作环境中得到保护,锂金属在操作环境中的稳定性得到提高。
中冶有色为您提供最新的广东有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月15日 ~ 17日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日