840
0
本发明涉及一种锂离子电池及其盖板结构,锂离子电池盖板结构包括电池壳盖、正极端板、负极端板、第一连接板、第二连接板、第一铆接件、第二铆接件、第三铆接件与第四铆接件。第一铆接件将第一连接板、电池壳盖、正极端板铆接在一起,第二铆接件将第二连接板、电池壳盖、负极端板铆接在一起。第三铆接件用于与正极极耳连接。所述第四铆接件用于与负极极耳连接。上述的锂离子电池盖板结构,第一铆接件、第二铆接件、第三铆接件及第四铆接件使组装速度变快,组装后不易于晃动,能避免传统的电池壳盖上的螺栓松动时引发电池壳盖漏液的不良现象,进而避免了锂离子电池内阻变大,能大大延长电池寿命。
本发明公开了一种多孔自交联型聚合物膜,由纯丙乳液和改性聚乙二醇溶液混合、交联并进行造孔得到;聚乙二醇两端的羟基被甲氧基取代得到所述改性聚乙二醇;所述造孔为将自交联型聚合物膜与聚乙二醇良溶剂接触。所述多孔自交联型凝胶聚合物膜的孔隙率为40-70%。在此基础上,还给出了该膜的制备方法和使用该膜作电解质的锂离子电池。制备的多孔自交联型凝胶聚合物电解质膜适于作为锂离子电池的电解质使用,其阻抗低、离子电导率高、高倍率充放电时不易极化。
870
0
本发明属于锂离子二次电池技术领域,尤其涉及一种软包装锂离子二次电池用电解液,包括有机溶剂、锂盐和添加剂,添加剂包括添加剂A、添加剂B和添加剂C;添加剂A为叔戊基苯和/或叔丁基苯,并且添加剂A在电解液中的质量百分比为5~10%;添加剂B为丙二腈、丁二腈、戊二腈、己二腈、庚二腈、辛二腈、壬二腈和癸二腈中的至少一种,并且添加剂B在电解液中的质量百分比为1~8%;添加剂C为氟代碳酸乙烯酯,并且添加剂C在电解液中的质量百分比为2~10%。相对于现有技术,本发明将添加剂A、B、C搭配使用在高电压设计的软包装锂离子二次电池中,即可保证电池具有良好的循环性能和高温存储性能,又能使电池具有良好的抗过充性能。
828
0
本发明公开了一种磷酸铁锂电池的高温寿命加速测试方法,取已完成化成的磷酸铁锂电池,分别进行初始容量测试、初始加速测试和循环加速测试,循环加速测试是在不同温度下,通过阶梯式加速测试直至其放电容量低于标称容量的75%后停止测试;把第三步最后一次放电循环的常温放电容量换算成容量保持率,然后根据对应充电温度的常温寿命与高温寿命转换数据表实现转换,得出所测试磷酸铁锂电池的常温寿命。本发明的磷酸铁锂电池的高温寿命加速测试方法具有测试准确性高、测试周期短、测试过程方便和参考性强的特点。
本发明提供一种非对称固态电解质及其制备方法以及一种固态锂电池及其制备方法,所制备的非对称固态电解质具有“固态聚合物电解质/无机固态电解质/凝胶聚合物电解质”多层结构;中间层是无机固态电解质,限制充放电过程中阴离子传输导致的极化行为;与金属锂负极接触一侧是采用原位聚合工艺制备的与金属锂具有良好电化学兼容性以及物理接触性能、且具有高机械强度的固态聚合物电解质,一方面高机械强度抑制锂枝晶的产生,同时改善界面性能,与正极接触一侧是采用基于原位聚合形成的凝胶聚合物电解质,凝胶聚合物固态电解质良好的柔韧性在一定程度上对体积变化产生的机械应力起缓冲作用,防止循环过程中的机械应力导致的界面失效问题。
726
0
本发明公开了一种铷掺杂混合电解质锂电池,包括正极结构、第一固态电解质层、液态电解质层、第二固态电解质层以及负极结构;所述第一固态电解质层的两侧分别与正极结构的液态电解质层相连接;所述第二固态电解质层的两侧分别与负极结构和液态电解质层相连接;所述液态电解质层位于第一固态电解质层、第二固态电解质层之间;所述第一固态电解质层、第二固态电解质层和液态电解质层均掺杂有铷元素。本发明充分结合固态电解质安全性高以及液态电解质离子导电率高的性能优势,一方面通过铷掺杂保障锂电池的离子导电率,另一方面通过在正负极端设置固态电解质层,取代传统液态电解质锂电池的隔膜,避免充电过程中锂枝晶生长刺破隔膜的安全隐患。
943
0
本发明提供了一种含有微球、含有该微球的隔膜及含有该隔膜的锂离子电池。所述微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括热敏聚合物,形成所述核芯的材料包括导电材料。本发明区别于传统的锂离子电池隔膜,采用聚合物定向设计包覆的方法,筛选热敏聚合物包覆导电材料,在不影响锂离子电池性能的前提下,在隔膜表面涂覆含有热敏聚合物包覆导电材料的微球,能有效改善锂离子电池的高温安全性能。
1101
0
本发明公开了一种用于锂电池的带有石墨烯的铝箔及其制备方法,涉及锂电池正极材料领域,该方法包括以下步骤:将铝箔浸入腐蚀剂并通电进行腐液,将多孔铝箔基底放入等离子气相沉降设备中,抽真空,升温至多孔铝箔基底的温度为980~1000℃,引入混有甲烷的惰性气体,得到石墨烯铝箔;在石墨烯铝箔的表面喷溅银离子,得到银包石墨烯铝箔;将有机锂、有机钴和有机锰溶解于甲壳素溶液中,得到反应液,将反应液置于温度为900~1000℃的惰性气体环境中煅烧1~2h,自然冷却,得到碳包裹的锂、钴、锰氧化物,其中,碳为多孔结构,将多孔碳与粘合剂混合后涂覆于银包石墨烯铝箔上。本发明能够避免活性物质脱落,提高电池的使用寿命。
895
0
本发明涉及电池回收利用技术领域,公开了一种废旧带电锂电池的回收处理装置,包括相互连接的电解液处理单元和物料分离单元,电解液处理单元包括破碎机和与破碎机连接的烘干机;物料分离单元包括风量逐渐减小的第一分离系统、第二分离系统和第三分离系统,第二分离系统、第三分离系统均与第一分离系统连接。在对带电锂电池进行处理时,保护气体降低破碎机内部的氧气含量,同时带走锂电池的热量,使其不具备火灾或者爆炸的条件,隔绝破碎过程中的化学反应和摩擦生热的效果,保证锂电池处理安全,同时再利用烘干机使电解液蒸发和挥发,通过冷凝装置冷凝后可得到液态的电解液,而未冷凝气体可通过碱液喷淋装置进行处理,保护生态环境安全。
1121
0
本发明公开了一种高能量密度高功率的锂离子电池,包括电池壳体、设置在所述电池壳体内的卷芯和填充在电池壳体内、卷芯内部及周围的电解液,所述卷芯包括正极片、负极片和贴设在正极片与负极片之间的隔膜,所述正极片包含正极材料层,所述正极材料层包含如下重量百分比的配方组分:正极活性物质91%~95%、导电剂2~4%、分散剂0.5~1.5%、粘接剂2.5~3.5%;其中,导电剂为碳纳米纤维或/和纳米导电碳粉与超导炭黑的混合物;所述分散剂为FS-CM。本发明高能量密度的锂离子电池具有优良的大电流放电性能、使用寿命长、能量密度高。
963
0
本发明提供了一种锂离子储能器件,包括壳体和置于所述壳体内的芯包,所述芯包包括若干芯包单体和第一隔膜,芯包单体堆叠设置,第一隔膜贴设于相邻两芯包单体之间;芯包单体包括一正极片、两负极片和两隔膜,正极片设置在两负极片之间,第二隔膜分别贴设于相邻的正极片与负极片之间,正极片包括依次叠加结合的正极电容器活性材料层、正极集流体基体和锂离子电池正极材料层;负极片包括依次叠加结合的负极电容器活性材料层、负极集流体基体和锂离子电池负极材料层。本发明储能器件的功率密度高,使用寿命长,结构简单、稳固。该锂离子储能器件制备方法工序简单、条件易控,生产效率高。
1010
0
一种锂离子电池正极的制作方法包括将水系正极浆料涂布在正极集流体上,然后进行干燥,其中,干燥过程包括三个阶段,第一干燥阶段和第三干燥阶段的温度低于第二干燥阶段的温度。本发明提供的锂离子电池正极的制作方法减轻了干燥时的卷边现象,制成的极片的柔韧性和附着力加强,无掉料破损现象,从而提高由该方法制得的正极组成的电池的容量和循环性能。
948
0
本发明涉及一种锂离子电池封盖方法,包括下列步骤:提供一锂离子电池的罐体,一与罐体配套的上盖;提供一形状记忆合金垫圈,放置在该罐体和上盖之间;施加适当相向压力在该罐体和上盖上,使形状记忆合金垫圈被压紧,而且诱发形状记忆合金垫圈相变形变,使具有体心立方结构的母相形成马氏体相(Martensite)变态;保持该压力,加热至奥氏体相终止温度(Austenite Final,Af)以上,使形状记忆合金垫圈恢复母相,从而形状记忆合金垫圈产生内缩力使罐体和上盖密封,再卸下压力。本发明的封盖方法具有安全性好、密合度高、失败率低和适合产线上应用等优点。
1120
0
本发明公开一种利用柴油机余热驱动的溴化锂吸收式制冷装置,该装置有别于现有技术之处主要在于:所述高压发生器与低压发生器的冷剂蒸汽发生器之间的溶液管路设置一高温蒸汽加压段,用于提高高温冷剂蒸汽从高压发生器向冷剂蒸汽发生器输送的速度,所述低压发生器的顶部蒸汽出口管处设置与冷凝器相连通的低压冷剂蒸汽加压段,用于促进低温蒸气从低压发生器向冷凝器的流动速度;另外本发明的冷剂蒸汽发生器和冷却液蒸汽发生器密闭于同一个容器中,由此明显减小了整个制冷装置的体积。本发明的溴化锂吸收式制冷装置具有加快制冷循环的过程,增加了制冷效率,同时降低了整个制冷装置体积的优点。
1026
0
本申请公开了一种复合补锂添加剂及其制备方法和应用。本申请复合补锂添加剂包括核体和包覆核体的包覆层,核体含有补锂材料,包覆层包括第一碳层,且在核体、第一碳层的至少一种中含有功能基团;其中,功能基团包括由有机碳源经裂解生成的含碳残基或/和氧氮基团。本申请复合补锂添加剂所含的补锂材料富含锂,通过在核体和包覆层的碳层中的至少一种中设置含碳残基或/和氧氮基团等功能基团,赋予复合补锂添加剂良好的结构、补锂和加工稳定性,并具有优异的电子和离子传导性能。其制备方法能够保证制备的复合补锂添加剂结构和电化学性能稳定。
1069
0
本发明涉及能源储存领域,具体涉及一种硫化锂‑锡全电池及其制备方法与应用。该全电池的制备方法,包括以下步骤:硫化锂正极电极制备、纳米锡材料负极电极的制备以及硫化锂‑锡全电池的组装。本发明的硫锂电池打破常规不使用硫作为正极,同时也避免金属锂作为负极,而是预先锂化硫获得的硫化锂作为正极电极,采用纳米锡材料为负极,组装成硫化锂‑锡全电池,增加了电池的安全性能,设计了具有更好比能量密度的锂离子全电池;本发明优化了正负极调浆时的配比,为制备高分散和高粘度的正负极涂覆浆料提供了工艺。
730
0
本发明公开了一种合成锂离子电池正极材料浆料的方法,该方法可以降低能耗,减轻设备腐蚀,环保,所得产物比容量较高。本发明通过下述技术方案实现:将一种粘接剂与水混合、搅拌均匀;加入一种导电剂混合、搅拌均匀;加入一种锂过渡金属氧化物搅拌;将另一种粘接剂混合、搅拌;将一种游离酸与水混合;将稀释后的游离酸水溶液加入上述浆料混、搅拌均匀,后涂布、烘干;所述锂过渡金属氧化物、所述第一种粘接剂、所述第二种粘接剂、所述游离酸、及水的重量配比为100∶(25-35)∶(1.5-3)∶(1.5-3)∶(2-4)∶(30-50)。
735
0
本发明属电池材料技术领域,公开了一种复合浆料、锂电隔膜及其制备方法和应用,其主要原料为多羟基高分子聚合物、聚丙烯酸酯类聚合物、碱性锂化合物和中性锂盐,其中,多羟基高分子高分子材料含有大量羟基,可与锂盐中的锂离子络合形成导锂通道,改善隔膜的锂离子电导率;聚丙烯酸酯类聚合物可改善锂电隔膜与极片的界面,保证锂离子传输界面的内阻小,提高锂离子电导率和保证电池长效循环寿命。通过本发明所得的锂电隔膜既能满足高耐热、高破膜温度、同时具有优异的离子电导率,可满足电池应用中的高安全、高倍率和长效循环寿命,适用于具有高要求的电池中,应用前景广泛。
1133
0
一种锂电池电解液,由锂盐、有机溶剂和添加剂组成。所述锂盐是高氯酸锂、三氟甲基磺酸锂、六氟磷酸锂、六氟砷酸锂、四氯铝锂、四氯硼锂中的一种或其组合物,浓度为0.5~2.0mol/L;有机溶剂是烷基磷酸酯RPO3R′R″;添加剂是浓度为0~5%(体积比)的二氧环戊烷DOL。本发明采用具有良好阻燃性能、溶解锂盐能力高和低粘度的烷基磷酸酯RPO3R′R″作溶剂, 使电解液电导率的最大值可到4.0m·S-1且不影响大多数嵌入电极反应的性质,可在-50℃~120℃的温度范围内使用,还使负极表面形成一层高柔韧性的SEI膜,提高了锂电池在生产、储存、运输和使用过程中的安全性,并且成本低。
824
0
本发明涉及一种新能源汽车锂电池卡扣声纹测试方法及其检测装置;包括采集合格声频,对每一组数据源的合格声频取其均值作为该型号汽车锂电池合格组装时的目标声频,以该目标声频作为相应型号汽车的检测基准输入至音频分析仪中;采集装配声频,收录锂电池组装时所发出的装配声频;复位校验,确认装配时所发出的装配声频是否与目标声频相吻合,从而判断出锂电池是否组装合格;本发明的有益效果体现为:通过采用麦克风获取锂电池组装至汽车中所发出的声频与装配合格时的目标声频进行对比,从而判断锂电池在装入汽车后是否装配成功,无需人工进行逐一排查,极大缩短换装周期,减少用户的等待时间,实用性强。
862
0
为克服现有锂离子电池循环寿命预测方法中存在局限性和有损性的问题,从而提供一种锂离子电池循环寿命预测方法。包括:S1:将base组锂离子电池进行放电,静置;S2:记录反弹电压与静置时间的关系曲线,进行拟合;S3:将上述锂离子电池进行实际循环寿命测试;S4:将待测锂离子电池进行放电,重复步骤S2;S5:根据步骤S2、步骤S4拟合得到的参数,以及步骤S3测试得到的实际循环寿命N0对待测锂离子电池的循环寿命Ni进行预测。本发明与常规的循环寿命预测方法相比,简单易行,不需要多次循环充放电,大大缩短测试周期,且与纯理论计算和经验模型预测相比,更具有普适性,与实际测试结果一致性更好。
767
0
本发明提供了一种负极片及其制备方法和包含该负极片的锂离子电池;所述负极片包括负极集流体、第一负极活性物质层、第二负极活性物质层、负极极耳,所述负极极耳设置在负极集流体一侧表面上,靠近所述负极极耳处且设置负极极耳一侧的负极集流体表面涂布第一负极活性物质层,远离所述负极极耳处且设置负极极耳一侧的负极集流体表面涂布第二负极活性物质层;所述第一负极活性物质层包括第一负极活性物质,所述第二负极活性物质层包括第二负极活性物质,本发明的负极片可以有效改善STP结构锂离子电池极耳位置析锂现象,改善锂离子电池的循环寿命;同时还可以有效缓解因为析锂带来的电芯析锂变形问题。
1033
0
本申请涉及储能技术领域,具体公开一种阻燃结构及其制备方法、锂电池结构。阻燃结构包括阻燃隔膜层和聚乙烯微球膜层,阻燃隔膜层包括有机聚合物层,以及设置于所述有机聚合物层内的阻燃剂;聚乙烯微球膜层包括聚乙烯微球和有机溶剂的混合物,设置于所述阻燃隔膜层的外表面。该阻燃结构应用于锂电池中时,在锂电池热失控过程中,锂电池仍然具有一定的放电容量,随着锂电池不断升温,阻燃结构中的聚乙烯微球膜层能够熔化覆盖在电池负极表面,阻断锂离子的传输,抑制热失控。当温度持续升高,阻燃隔膜层中的阻燃剂释放出来,使电解液不可燃,避免起火和爆炸,正负极材料依然能回收再利用,解决了资源浪费的问题。另外还兼容了电池的电化学性能。
1029
0
本发明提供一种固态电解质复合层及锂离子电池。该固态电解质复合层包括依次层叠设置的近正极侧固态电解质层、中间固态电解质层、近负极侧固态电解质层,通过使中间固态电解质层包括无机陶瓷电解质、近正极侧固态电解质层包括抗氧化性较强的近正极侧聚合物、近负极侧固态电解质层包括与金属锂稳定的近负极侧化合物,能使固态电解质复合层机械强度高,避免锂枝晶刺穿电解质,且满足正极侧耐高压和负极侧与金属锂稳定的需求,同时固态电解质复合层的界面润湿性良好。该锂离子电池包括上述固态电解质复合层,由于固态电解质复合层的机械强度高、润湿性能优异、与正负极界面稳定性好,因此该锂离子电池具有电池内阻小、循环性能好、安全性高的优点。
1005
0
本发明提供了一种耐过充电解液及其制备方法,包括锂盐、溶剂、离子液体、防过充添加剂、成膜添加剂和阻燃添加剂,所述锂盐由六氟磷酸锂、双三氟甲基磺酰亚胺锂和二草酸硼酸锂组成,所述溶剂由碳酸乙烯酯、碳酸丙烯酯和碳酸甲乙酯组成,所述离子液体为N‑甲基‑N‑PROPYLPIPERIDIUM双(三氟甲烷磺酰)亚胺,所述防过充添加剂由联苯和环己基苯组成,所述成膜添加剂由碳酸亚乙烯酯、1,3‑丙烷磺酸内酯和硫酸乙烯酯组成,所述阻燃添加剂为磷酸三苯酯。该耐过充电解液使得二次锂电池具有较高的安全性和电化学性能,实现长循环和防过充性能。
1141
0
本发明公开了一种基于背景标准化和集中补偿算法的锂电池电极表面缺陷检测方法,通过由照明设备、线阵摄像机、传送装置、贴标机、工控机和PLC搭建成的测量系统实现,具体实现步骤如下:用线阵摄像机获得锂电池电极表面图像;然后用背景标准化算法对电极表面图像进行预处理;接着进行缺陷粗检测,对预处理之后的电极表面图像进行自动阈值分割获取缺陷可能存在的区域;最后进行缺陷精确检测,用自动集中补偿算法对缺陷可能存在的区域进行精确检测,从而得到缺陷图像。本发明提出的锂电池电极表面缺陷检测方法能在保证锂电池电极表面缺陷检测效果的前提下,满足实际锂电池工业生产过程中的在线实时缺陷检测的要求,提高锂电池的生产效率。
1114
0
本发明属于锂离子电池技术领域,具体涉及一种电池电极粘结剂、电极及锂离子电池。该电池电极粘结剂包括阴离子型离子液体聚合物,其中,所述阴离子型离子液体聚合物的结构单元包括选自如下式(1)‑式(3)所示结构单元中的任意一种:具有较强的粘结性,电池的循环性能优,特别是具有较好的锂离子导通能力,有利于提高电池的倍率性能。
1014
0
本发明涉及超级电容器领域,具体而言,提供了一种锂离子混合超级电容器及其制备方法。锂离子混合超级电容器包括负极、隔膜、正极和电解液;负极为能够与电解液中锂离子合金化的金属、合金或金属复合材料;正极包括正极材料和正极集流体,正极材料中的正极活性材料为能够可逆地吸附、脱附电解液中阴离子的碳材料;锂离子存在于混合超级电容器的电解液中。该锂离子混合超级电容器以能够与电解液中锂离子合金化的金属、合金或金属复合材料作为负极,上述材料起到负极活性材料和负极集流体的双重作用,不但简化了电容器的生产工艺、降低了生产成本,还提高了电容器的能量密度和理论比容量。
1215
0
本发明提供了一种基于锂电池供电的多电压输出电源装置,包括锂电池充电模块、5V升压模块、3.3V降压模块和3.8V降压模块,锂电池充电模块、5V升压模块和3.3V降压模块依次连接,锂电池充电模块、5V升压模块和3.8V降压模块依次连接,从而可以使得该电源装置可以获得给5V模块供电,给3.8V模块供电和给3.3V模块供电的功能。本发明提供了一种基于锂电池供电的多电压输出电源装置,该电源装置能够提供三种不同大小的电压,能很好的解决当前锂电池供电适用性不强的问题。
本发明公开了一种聚氧化乙烯基凝胶聚合物电解质,包括聚氧化乙烯薄膜和吸附在所述聚氧化乙烯薄膜上的电解液;所述电解液为浓度为0.5mol/L~1.5mol/L的锂盐溶液,所述电解液的溶剂为体积比为1~2:1~2:2~6的碳酸丙烯酯、碳酸乙烯酯和碳酸甲乙酯的混合液。上述聚氧化乙烯基凝胶聚合物电解质应用于锂离子电池时,由于锂离子电池内部采用了聚氧化乙烯薄膜,不易流动,不会发生漏液现象,也不会因为液体沸腾产生大量气体而爆炸,和传统的锂离子电池相比,这种采用了聚氧化乙烯基凝胶聚合物电解质制备的锂离子电池,使用更加安全。本发明还提供一种上述聚氧化乙烯基凝胶聚合物电解质的制备方法,以及使用该聚氧化乙烯基凝胶聚合物电解质的锂离子电池。
中冶有色为您提供最新的广东有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日
2026年01月23日 ~ 24日