本发明提供了一种新型基于还原氧化石墨烯‑二硫化钨复合材料氨气气体传感器及其制备工艺,属于传感器技术领域。本发明包括气敏复合材料以及传感器基板,复合气敏材料是利用一步水热合成获得的纳米材料,所述的气敏材料均匀涂覆与传感器基板的金叉指电极上,传感器基板背面加热板的瞬间加热温度是140℃,加热恢复时间是随检测气体浓度线性变化。本发明的还原氧化石墨烯‐二硫化钨复合材料在室温环境中对氨气表现出良好的响应性能,具有良好的选择性、稳定性以及可重复性等。此发明中的气体传感器恢复阶段,使用瞬态加热在有效缩短还原所需时间的同时,不会对气体敏感材料的性能产生影响,具体瞬态加热时间可以根据探测获得的气体浓度进行设定。
1103
0
本发明提供了一种硒化铅量子点负载石墨烯复合材料及其制备方法,采用离子络合方法及氧化石墨烯片为硬模板制备。首先利用可溶性铅盐与氧化石墨烯中的羧酸基团的络合和静电作用,将铅离子固定在氧化石墨烯的表面,然后缓慢滴加少量碱性溶液,氢氧根离子和羧酸根离子间的静电排斥作用使得氧化石墨烯片层间保持一定间距;在氮气保护下制备硒的前驱体溶液,并将其加入氧化石墨烯?铅离子络合物中回流反应;再加入还原剂将其中的氧化石墨烯片还原,制得硒化铅量子点负载石墨烯复合材料。本发明制备条件简单,操作便利,可多次重复,所得石墨烯?量子点复合材料不仅具有石墨烯的高电子传输性能,而且具较高的赛贝克系数,在热电领域具有较好的应用前景。
本发明涉及一种纳米Al2O3/聚酰亚胺摩擦复合材料滑动轴承的制备方法,首先在钢板表面烧结一层青铜粉作为中间层,然后在中间层上轧制一层包含纳米Al2O3的聚酰亚胺聚合物层,再经过氮气保护条件下的烧结、机械加工修饰和卷制焊接,制成复合材料滑动轴承。其中所述聚合物层的原料组成重量百分比为:聚酰亚胺:70~95%,聚四氟乙烯:2.5~15%,纳米Al2O3:1.5~10%,铅粉:1~5%。经上述工艺制得的纳米Al2O3/聚酰亚胺摩擦复合材料滑动轴承具有优良的力学性能和摩擦学性能,可用于机械、食品、航空航天等部门各种无油润滑的场合。
1180
0
本发明将公开一种新型低烧玻璃陶瓷复合材料及其制备方法,该复合材料的成份包括氮化铝和堇青石基玻璃,两者的重量比例为35~57∶65~43;所述堇青石基玻璃包括下述以重量百分比计的成份:SiO2 50~53%,Al2O3 20~26%,MgO 15~23%,B2O3 1.5~5%,P2O5 0~2.5%,1~6.5%RxOy;其中所述RxOy中的R为Bi、Ce和Zn中的之一;x=1~2;y=1~3。本发明用于先进电子封装的氮化铝/堇青石基玻璃陶瓷复合材料的相对密度达97.2%以上,热导率最高可达7.5W/m.K,热膨胀系数为3.2~3.8×10-6K-1,抗折强度不低于168MPa,断裂韧性不低于2.38MPa.m1/2,介电常数比现有报道的材料低,有利于提高信号的传输速度,且其还具有较高的室温热导率,热膨胀系数与硅匹配,力学性能也大大提高。
751
0
本发明涉及一种简便可行的聚合物/无机物纳米复合材料用改性蒙脱土的制备方法,是将蒙脱土与一种有机改性剂或混合有机改性剂在固体粉末状态下直接进行反应改性,得到的改性蒙脱土可直接用于聚合物/蒙脱土纳米复合材料,实现聚合物大分子在蒙脱土层间的有效插层,得到性能优良的纳米复合材料。该方法具有简便易行、生产成本低、无须使用水或溶剂、无环境污染等优点,具有良好的工业应用前景。
1145
0
一种导电长纤维复合材料,其在模塑产品中使用时提供改进的表面电阻率和/或冲击强度。该复合材料包括:热塑性树脂;碳长纤维;和玻璃长纤维;其中碳长纤维和玻璃长纤维的长度大于或等于约2毫米,且其中导电长纤维复合材料在模塑成制品时显示表面电阻率小于或等于约10欧姆每平方厘米,以及缺口艾佐德冲击强度大于或等于约10千焦每平方米。
864
0
本发明涉及一种陶瓷基复合材料涡轮发动机。在一个实施例中,提供了一种用于涡轮发动机(10)的过渡部分(16),其包括由陶瓷基复合材料构成的一个或多个构件。过渡部分(16)可以以流体的方式连接燃气轮机发动机(10)内的高压涡轮(12)和低压涡轮(14)。过渡部分(16)可包括过渡导管(33)和可变截面涡轮喷嘴(44)。过渡导管(33)和可变截面涡轮喷嘴(44)其中之一或两者可由陶瓷基复合材料构成。
1062
0
连续腔室泵的定子、转子和/或挠性轴由复合材料,例如玻璃纤维和树脂,以带或不带粘接的弹性体的多种组合构成。选择复合材料的成分,在所需要的地方提供弹性和非弹性。在旋转动力源与转子之间的挠性轴由复合材料制成,并设计成可吸收转子的轨道和旋转运动。
本发明公开了一种管状g‑C3N4/CuS/Cu2S纳米复合材料及其制备方法和应用,该纳米复合材料为g‑C3N4、CuS、Cu2S纳米颗粒组成的三元复合材料,其中,g‑C3N4具有纳米管状结构,CuS、Cu2S纳米颗粒均匀分散在g‑C3N4的管壁上,g‑C3N4与CuS、Cu2S构建成p‑n型异质结结构,且具有明显界面。该纳米复合材料各组分含量、长度、直径可调,且可调范围大,可见光下光催化降解性能良好。
一种用粉石英矿生产的3D打印金属陶瓷复合材料,其为球状结构,所述金属陶瓷复合材料由质量比为70:30的碳化硅粉末和金属粉末组成,其中,所述碳化硅粉末由摩尔比为0.7:1的粉石英矿和碳粉组成,所述金属粉末由质量比为90:100~0:10的铁粉和钴镍粉组成。发明得到的金属陶瓷复合材料,具有高强度、抗腐蚀强、松装密度高和流动性好的优点,此外,本发明中的金属陶瓷复合材料中金属材料的含量低,还具备高强度、轻量化的优点。
本发明公开了一种Cu1.81S/Ni1.03S/NG/NF复合材料及其制备方法,其特征在于,二维Cu1.81S/Ni1.03S/氮掺杂石墨烯(NG,nitrogen‑doping graphene)复合结构层叠层原位生长于泡沫镍(NF,Ni foam)表面形成多级网状结构,层叠层Cu1.81S/Ni1.03S/NG/NF复合材料是由乙酸铜、邻菲罗啉溶于乙醇、乙二醇和聚乙二醇200的混合溶剂中,再与升化硫在通氮气的条件下,以1‑20℃/min的升温速度升温至400‑600℃,保温3‑12h制得层叠层Cu1.81S/Ni1.03S/NG/NF复合材料。本发明所述制备方法操作简单,所得1.81S/Ni1.03S/NG/NF复合材料具有很好的HER和OER性能。
本发明涉及一种石墨烯负载Mn3O4纳米空心球复合材料及其制备方法,该复合材料是在Mn3O4纳米空心球的表面负载有石墨烯,粒径大小不规则,约为:0.2~2μm;其中Mn3O4纳米空心球的孔径为:100~200nm;石墨烯和Mn3O4纳米空心球的质量比为:0.1~10。本发明的石墨烯负载Mn3O4纳米空心球复合材料GNS-Mn3O4不仅具有较大的比表面积,能够提供更多的嵌锂位点,而且能够为充放电过程中的形变应力提供缓释空间,从而具有很好的储锂性能。同时该复合材料制备工艺反应时间短、反应温度低,反应条件温和,对设备要求低,适用于大规模工业生产。
本发明公开了一种用于Cf/SiC复合材料与不锈钢钎焊的钎焊材料及钎焊工艺,该钎焊材料按重量百分比各元素组分如下:Zr38%~46%,Ti12%~20%,Fe26%~38%,Nb3%~5%,B5%~7%。本发明的用于Cf/SiC复合材料与不锈钢钎焊的钎焊材料,该钎料的流动性好,对Cf/SiC复合材料润湿性高,且与Cf/SiC复合材料及不锈钢的结合性能佳,抗拉强度高,能够有效减小陶瓷与金属连接界面产生的残余应力;其次,该钎料中不包含Ag、Pd等贵金属元素,在提高焊接性能的基础上,降低了生产成本;此外该钎料能够制成不同的形式,制成的膏状使用方便,适合在不规则的、小型的或几何形状复杂的零件上使用,制作成非晶态成分均匀,制作成金属布态柔韧性高,方便用于不同的场合,适用不同形状的陶瓷零件的钎焊。
831
0
本发明涉及一种3D打印石墨烯?金属复合材料、制备方法及应用。制备方法如下:(1)在超声作用下将石墨烯量子点和/或石墨烯微片与纳米金属单质/纳米金属化合物进行混合研磨剪切,制得复合浆体材料或复合粉体材料,超声的频率为10?100KHz,其中石墨烯量子点和/或石墨烯微片的重量占总重的0.01%?35%;(2)对制得的复合浆体材料或粉体材料进行干燥。该发明为3D打印提供激光烧结石墨烯金属物质复合材料及其制备方法,得到的复合材料具有高硬度、高强度、耐腐蚀,易被加工使用的优越性能,经3D打印后可利用激光烧结、淬化,促进复合材料颗粒致密化,并细化晶粒,从而改善3D打印产品的机械性能。
本发明涉及一种三组元CuO-Cu-TiO2纳米管阵列复合材料的应用、应用装置及其制备方法,属于新能源材料的开发与研究技术领域。该三组元CuO-Cu-TiO2纳米管阵列复合材料用作锂离子电池的电极。以三组元CuO-Cu-TiO2纳米管阵列复合材料用作锂离子电池的工作电极,以锂箔为对电极和参比电极,以Celgard2400膜为隔膜,以含1mol/LLiPF6混合液为电解液,在充满高纯氩气的手套箱中组装成扣式锂离子电池。首先采用阳极氧化法制备的三维有序TiO2纳米管阵列;在TiO2纳米管阵列上恒压沉积Cu纳米颗粒;最后进行热处理制备得到三组元CuO-Cu-TiO2纳米管阵列复合材料。本方法制备工艺简单,无需添加额外的导电剂和聚合物粘结剂。
761
0
一种Al2O3颗粒增强镁基复合材料的方法及其应用,本发明目的是要利用纯铝屑与Al2O3颗粒制成增强体预制块,加入到熔融状态的镁合金熔液使之形成更高强、更好导热性、加工性能优良的镁基复合材料。在航天航空、汽车和电子封装等领域应用广泛。其特征是:首先将Al2O3颗粒表面改性,使其在镁合金基体中均匀分布;将改性的Al2O3颗粒与纯铝屑压制成增强体预制快;将镁合金放入熔炼炉中在SF6和CO2气体的保护下加热熔化;将增强体预制块加入熔液,搅拌至熔化;浇铸到模具冷却制得镁基复合材料。本发明主要用于Al2O3颗粒增强镁基复合材料,解决了Al2O3颗粒与镁基体润湿性差及难加入镁基体问题。
磁性颗粒-凹凸棒石纳米复合材料及以凹凸棒石直接酸溶的制备方法,复合材料是在凹凸棒石晶体表面负载有纳米磁性颗粒。以沉积型凹凸棒石粘土为原料,首先对其进行酸溶,溶解出凹凸棒石晶体结构中的铁离子,再进行碱中和,使溶出的铁离子水解形成铁氢氧化物;最后对悬浮液进行脱水、洗涤,所得固形物还原焙烧,铁氢氧化物转变为纳米磁性颗粒,并负载在凹凸棒石晶体表面,获得磁性颗粒-凹凸棒石纳米复合材料。本发明复合材料可用电磁场进行操纵,实现凹凸棒石吸附剂的磁絮凝、磁回收、磁过滤、靶向控制。
875
0
一种可披挂式吸波复合材料的制备方法,本发明涉及吸波复合材料的制备方法。本发明是要解决现有的以吸波纤维制备的吸波织物制备工艺复杂和成本较高、用电磁粉末填充织物空隙的吸波织物吸波性能差的技术问题。方法:将吸波体与液态的有机聚合物混合得到浆料,将经表面改性后纺织品浸入到浆料涂挂浆料,然后经刮胶、滚压或挤压操作后,固化、烘干,得到可披挂式吸波复合材料。本发明的可披挂式吸波复合材料最低反射率在-10~-80dB,小于-10dB的吸收频宽在1~10GH,而且制备工艺简单。该材料可用于军用飞行器、舰船、导弹等隐身军事领域。
本发明涉及电化学传感器技术领域,特别是涉及一种基于丝瓜络生物质炭复合材料的电化学传感器的制备方法,包括如下步骤:预碳化丝瓜络;氢氧化钾活化丝瓜络粉末;制备多孔生物质碳/聚3,4‑乙烯二氧噻吩‑金复合材料;制备电化学传感器;本发明制备方法简单,所用的丝瓜络原料来源广泛、价格低廉,制备的复合材料具有较大的比表面积、导电性强和多孔结构,制得的电化学传感器具有良好的导电性和优越的电催化性能;本发明还提供该复合材料的制备方法及该复合材料修饰电极在电化学传感器中的应用,本发明不仅推动了电化学传感器领域的发展,而且在食品、医药和环境检测等领域具有广阔的应用前景。
本发明涉及一种碳化硅‑过共晶硅铝合金复合材料粉末,通过调整碳化硅和硅的加入量,使所述复合材料粉末的耐磨性能、导热率、比热容、热膨胀系数、强度可以适应不同滑动/摩擦对偶材料,降低磨损,提高机械效率。本发明提供的所述复合材料粉末的制备方法,结合所述原料组分,在惰性气氛条件下采用急速冷却喷雾造粉工艺,制备的复合材料合金粉末的初生硅晶粒尺寸小于10μm,且包含1‑20μm的SiC微粒,在惰性气氛下急速冷却合金粉末,降低了合金粉末的含氧量,使复合材料合金粉末制品呈现低含氧量,改善了制品的综合机械性能和耐磨性。另外所述制品符合轻量化、微型化的零件发展趋势,具有优异的导热散热性能,机械效率得以大大提高,使用寿命也得以延长。
962
0
本发明涉及一种石墨烯镍复合材料和使用该材料制备的石墨烯镍碳电极,其中,本发明公开了一种石墨烯镍复合材料,其特征在于:固定于镍基体的石墨烯材料片为载体,金属镍沉积于石墨烯表面。同时本发明公开了该石墨烯镍复合材料的制备方法。该石墨烯镍复合材料既具有石墨烯材料的优异导电、导热性、巨大比表面积,同时具有镍电极的电化学氧化还原反应特性。本发明还公开了使用石墨烯镍复合材料制备石墨烯镍碳电极的方法,主要有电化学沉积法、化学浸渍法、电泳沉积法,制得石墨烯镍碳电极不仅具有超级电容特性而且具有镍氢电池电极的特性,易于制成具有实用价值的超级镍氢电池。
1146
0
本发明公开了一种单晶硅拉制炉的CF/Si3N4复合材料埚帮及其制备方法。关键是复合材料埚帮的组分组成是(按重量百分比计算):炭纤维布60~70%;陶瓷浸渍液25~40%;热解炭10~15%;经高温烧制得所述的CF/Si3N4复合材料埚帮。本发明具有较高的炭纤维含量和较低的热解炭含量,同时含有一定量的氮化硅、碳化硅等陶瓷成分,进一步提高了强度和抗硅腐蚀的性能。
703
0
本发明涉及一种聚偏氟乙烯SiO2改性石墨烯复合材料及其制备方法。该方法包括以下步骤:(1)将SiO2改性氧化石墨烯包覆于阳离子PS微球表面,得到SiO2改性氧化石墨烯阳离子PS微球复合物;(2)将所得SiO2改性氧化石墨烯阳离子PS微球复合物煅烧,得到SiO2改性石墨烯;(3)将所得SiO2改性石墨烯与聚偏氟乙烯经溶液共混、成膜、热压,得到聚偏氟乙烯SiO2改性石墨烯复合材料。本发明方法制备的聚偏氟乙烯SiO2改性石墨烯复合材料介电常数高、介电损耗低、综合性能优异。
一种三维多级孔洞的石墨烯/氨基化碳纳米管复合材料的制备方法及其应用,涉及一种石墨烯/碳纳米管复合材料的制备方法及其应用。本发明是要解决现有的石墨烯/碳纳米管中的碳纳米管通常需要预处理,导致其成本较高的技术问题。本发明:一、制备氧化石墨烯胶体悬浮液;二、制备氨基化碳纳米管和氧化石墨烯的混合液;三、循环伏安电沉积。本发明的三维多级孔洞的石墨烯/氨基化碳纳米管复合材料作为生物电极应用到生物电化学系统中。本发明能够一步电沉积合成,并在生物电化学系统中用作生物阳极以改善电池电导率并增加生物量。该电极展现出具有正电荷的三维互连导电支架结构,以及良好的表面疏水性能,这有利于细菌粘附和定植。
1104
0
本发明涉及一种氮化硼纳米管‑纳米纤维素纤维复合材料,按质量分数计所述复合材料包括氮化硼纳米管5~40%以及纳米纤维素纤维60~95%。本发明还涉及一种所述氮化硼纳米管‑纳米纤维素纤维复合材料的制备方法,所述制备方法为将氮化硼纳米管与纳米纤维素纤维水溶液混合,超声处理,固液分离,得到氮化硼纳米管‑纳米纤维素纤维复合材料。所述复合材料有效地降低了界面热阻和声子散射作用,有提高了复合材料的导热性能,维度稳定性好,且具有生物可降解性。所述制备方法简单温和,可用于工业化生产。
本发明提供了一种Au纳米材料/Au?金属氧化物纳米复合材料的制备方法。本发明利用柠檬酸钠难溶于纯乙醇的特点,利用柠檬酸钠乙醇溶胶还原氯金酸,从而得到粒径分布更窄、更均匀,分散性更好,并且尺寸可调的Au纳米材料/Au?金属氧化物纳米复合材料。本发明方法有效克服了柠檬酸钠难溶于乙醇的缺点,且不需要加入任何稳定剂和保护剂,具有工艺简单、反应条件温和等优点;利用离心分离提纯方法,将具有不同粒径大小的柠檬酸钠乙醇溶胶颗粒分离,选择所需粒径大小的柠檬酸钠乙醇溶胶颗粒还原氯金酸,从而在低温环境下得到粒径分布窄、均匀,并且尺寸可调的Au纳米材料/Au?金属氧化物纳米复合材料。
1008
0
本发明提供了一种新型石墨烯聚离子液体复合材料的制备方法。该方法包括如下步骤:(1)制备氧化石墨烯;(2)离子液体1-[(2-甲基丙烯酰氧基)-乙基]-3-丁基咪唑溴盐(MEBIm-Br)的制备;(3)以1-[(2-甲基丙烯酰氧基)-乙基]-3-丁基咪唑溴盐(MEBIm-Br)作为咪唑类离子液体,制备得到新型石墨烯聚离子液体复合材料(rGO-poly-MEBIm-B与rGO-poly-MEBIm-Br)。所得到的新型石墨烯聚离子液体复合材料不仅能够运用于生物传感器,超级电容器等方面,在污染物的吸附分离方面也展现出良好的性能。
876
0
本发明属于碳/碳复合材料领域,公开一种Cu‑Mo混合浸渗制备C/C‑Cu复合材料的方法。采用碳纤维针刺毡作为预制体,经化学气相渗透工艺制备得到C/C多孔体;将Mo粉和Cu粉混合后,在N2保护下研磨均匀;将C/C多孔体包埋于混合粉末中,在真空或惰性气氛保护下进行热处理,先在900~1100℃下保温1~2h,继而在1100~1300℃下保温0.5~2h,之后自然降温冷却;取出石墨坩埚内所得坯体,即得C/C‑Cu复合材料。本发明通过添加Mo元素改善现有技术中铜与碳界面润湿性较差等缺点,具有工艺简单、易控制等优点。
921
0
拉挤缠绕复合成型激光固化制备复合材料空心型材利用了激光照射产生的光热转化效应,迅速获得预浸复合材料空心型材固化所需的温度,从而使固化速度大大加快,在拉引装置15作用下,预浸带4经挤胶板5上的孔洞导入芯模8周围。此时,在绕丝装置9的作用下,缠绕增强纤维供丝线轴10上的增强纤维丝束经过供丝管7的内孔供出,成为缠绕增强纤维丝束6,缠绕增强纤维丝束6连续不断地缠绕在预浸带4的外面形成复合预浸料,并在拉引装置15作用下向拉引力方向16进给,随后,复合预浸料被导入激光发生器13发射的激光束14的作用区开始升温并达到最终的固化温度,固化形成复合材料空心型材。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日