1074
0
非晶和纳米晶的硅硼碳氮陶瓷复合材料及其制备方法,它涉及硅硼碳氮陶瓷复合材料及其制备方法。本发明解决了现有的硅硼碳氮陶瓷复合材料性能差、制备工艺复杂、成本高的问题。复合材料由硅粉、石墨和六方氮化硼制成。方法:将原料称取后球磨混合,然后再进行烧结即得到复合材料;另一种方法:原料称取后,先将硅粉和一部分的石墨球磨,再加入称取的六方氮化硼和剩余的石墨继续球磨后再进行烧结即得到复合材料。本发明的硅硼碳氮陶瓷复合材料性能好、制备工艺简单、成本低。?
1219
0
水相分解热固性环氧树脂或其复合材料,它涉及一种分解环氧树脂或其复合材料的方法。它解决目前热固性环氧树脂或其复合材料回收成本高、回收率低且对环境污染严重的问题。热固性环氧树脂分解步骤:一、将热固性环氧树脂或其复合材料与水加入反应釜;二、加热分解,即完成热固性环氧树脂或其复合材料的分解。本发明中热固性环氧树脂或其复合材料的分解率为52~100%;热固性环氧树脂的分解产物可作为化工原料再次使用;复合材料分解后,分解液中固相沉淀为增强纤维,经清洗、烘干就可再次使用。本方法工艺流程简单,成本低,设备简单,分解效率高;分解液不必蒸发回收,能耗低,反应过程中对操作人员无毒副作用,反应后处理简单,不影响环境。
822
0
一种相调控可陶瓷化无卤阻燃聚烯烃复合材料及其制备方法,它涉及一种无卤阻燃聚烯烃复合材料及其制备方法。本发明的目的是要解决现有陶瓷化树脂复合材料的阻燃性能差,无法满足阻燃要求的问题。一种相调控可陶瓷化无卤阻燃聚烯烃复合材料按重量份数由树脂、无机阻燃剂、陶瓷前驱体聚合物和助剂制备而成。方法:一、称料;二、制备混合粉体;三、制备料A;四、制备料B;五、将料A和料B加入到密炼机中混炼、造粒。本发明利用相调控技术获得无机阻燃剂的选择性分布,实现了无机阻燃剂在复合材料特定相中的陶瓷化阻燃。本发明可获得一种相调控可陶瓷化无卤阻燃聚烯烃复合材料。
一种利用Hummers法混合酸液直接制备GO/纤维素复合材料的方法,它属于氧化石墨烯/纤维素复合材料领域。本发明利用改进的Hummers法制备GO混合酸液;木质纤维素的预处理;GO/纤维素复合材料的制备:将制备的木质纤维素加入步骤1制备的GO混合酸液中,加热反应后,洗涤过滤透析至中性,得到的混合液冷冻干燥或经超声处理后再冷冻干燥,制得GO/纤维素复合材料。本发明提供了一种直接利用Hummers法反应后的酸性混合液制备GO/纤维素复合材料的方法。简化了制备GO/纤维素复合材料的操作,缩短反应时间,节约制备成本,可在一定程度上降低对环境的影响。
1089
0
本发明提供了一种碳纤维增强镁基复合材料及其制备方法,利用镁合金废屑制备碳纤维增强镁基复合材料的方法将增强相‑金属屑混合物进行机械搅拌后真空烧结并结合热挤出工艺得到碳纤维和镁合金屑更好结合的金属基复合材料。相对于传统的表面改性法制备碳纤维增强镁基复合材料的方法,这种机械搅拌结合真空烧结热挤压制备碳纤维增强镁基复合材料的制备方法工艺简单,同时在这种复合材料制备方法中,真空烧结具有良好的还原性,防止镁合金氧化且获得的坯料孔隙率较低有利于基体与增强相浸润、复合和增进界面结合。
1104
0
空心圆管金字塔型全复合材料点阵夹芯板的制备方法,它涉及一种金字塔型点阵夹芯板的制备方法。本发明的目的是为了解决目前制备的金字塔型全复合材料点阵夹芯板低密度时力学性能差的问题。技术要点:制备刚性模具;处理模具;固定刚性模具;用预浸料或浸过树脂的纤维束包裹热膨胀芯模制成预浸料或缠绕纤维柱;制备空心圆管结构:将制作好的带热膨胀芯模的纤维柱塞进第一圆形通孔和第二圆形通孔内,将多个纤维柱的两端外露在刚性模具的外面;在组合模具的上下表面铺放单向纤维预浸料,并将露在刚性模具外面的纤维柱的两端沿纤维柱的轴向劈开预埋在上下表面的预浸料中;固化;脱模。本发明用于制备空心圆管金字塔型全复合材料点阵夹芯板。
841
0
一种纤维增强复合材料点阵夹芯板及其制造方法,它涉及点阵夹芯板及其制造方法。它解决了现有金属点阵夹芯板成型困难,使用材料只是局限在金属材料的问题,本发明的点阵设在纤维复合上面板(1)与纤维复合下面板(3)之间,点阵由若干根纤维复合柱(2)构成,纤维复合柱(2)的上端与纤维复合上面板(1)固接,纤维复合柱(2)的下端与纤维复合下面板(3)固接。制备方法一、设计清理模具,并涂上脱模剂;二、预浸料剪裁成设计的尺寸挫成杆,将杆放入模具孔内;三、铺放上面板和下面板;四、加温加压固化,即得纤维复合材料点阵夹芯板。本发明的纤维增强复合材料点阵夹芯板与传统金属点阵夹芯板相比较具有更高的比强度、比刚度,易于设计。
一种高介电性能聚偏氟乙烯碳化钛纳米片复合材料的制备方法,它涉及一种聚偏氟乙烯复合材料的制备方法。本发明的目的是要解决现有聚偏氟乙烯的介电常数低的问题。方法:一、制备二维层状TiC纳米片;二、复合,得到碳化钛纳米片质量分数为5%~20%的高介电性能聚偏氟乙烯碳化钛纳米片复合材料。本发明制备的高介电性能聚偏氟乙烯碳化钛纳米片复合材料可应用于微电子加工、集成电路、高效率储能元件领域;本发明制备的高介电性能聚偏氟乙烯碳化钛纳米片复合材料的介电常数为9.8~19.1。本发明可获得一种高介电性能聚偏氟乙烯碳化钛纳米片复合材料。
一种高表面精度高可靠性金刚石增强金属基复合材料的制备方法,涉及金属基复合材料的制备。目的是解决金刚石增强金属基复合材料表面精度低和可靠性差的问题。方法:粒径为5~20μm的金刚石粉平铺在模具底部,再平铺粒径为20~300μm的金刚石粉,最后平铺剩余的粒径为5~20μm的金刚石粉,振实冷压得到金刚石坯体,进行放电等离子烧结,进行压力浸渗。本发明所制备的复合材料的具有高的表面精度、热导率和可靠性。利用放电等离子烧结将金刚石表面的涂层烧结在一起形成连续的三维连通网络状的导热通路,提升了所制备的复合材料的导热性能。本法适用于金刚石增强金属基复合材料的制备。
一种网状分布的TiBw和TiCp混杂增强Ti60基复合材料及其制备方法,它涉及一种增强Ti60基复合材料及其制备方法。本发明的目的是要解决现有钛基复合材料性能单一,综合力学性能提高幅度有限,限制了其应用范围的问题。一种网状分布的TiBw和TiC混杂增强Ti60基复合材料以TiB2粉和C粉为原料,以Ti60合金为基体,原位自生形成TiB晶须和TiC颗粒混杂增强体,混杂增强体位于Ti60基体颗粒周围,构成网状结构。方法:一、机械混粉;二、热压烧结。本发明中TiCp的引入有效增加了网状界面处局部增强体含量,提高了复合材料强度。本发明可获得一种网状分布的TiBw和TiCp混杂增强Ti60基复合材料。
1041
0
一种新型石墨烯纳米片增强金属基复合材料的制备方法,本发明涉及一种石墨烯纳米片增强金属基复合材料的制备方法。本发明是要解决目前石墨烯纳米片增强金属复合材料中石墨烯结构损伤大、分散性差、成本高的问题。方法:一、球磨混粉;二、放电等离子体烧结致密化;三、多道次热累积叠挤,既制备出复合材料。本发明工艺方法简单、经济高效、制备的复合材料强塑性兼具,且保持较高的室温电导率,用于制备石墨烯纳米片增强金属基复合材料。
783
0
一种聚乙二醇修复石墨烯增强铝基复合材料的制备方法,涉及一种石墨烯增强铝基复合材料的制备方法。目的是解决助磨剂在铝合金基体中产生残留的问题,并且实现石墨烯自修复。制备:称取石墨烯、聚乙二醇和铝金属粉末,装入球磨罐中球磨,冷压,冷压后进行复合材料的制备。助磨剂聚乙二醇热分解产生活性C原子,吸附在石墨烯缺陷处使得石墨烯结构完整性大幅度提升,并且形成了良好的界面连接,使材料整体性能有较大提升,并且聚乙二醇利于铝金属粉末成片,解决了单层或少层石墨烯在铝基复合材料中的分散难度大的问题和减少铝金属粉末间的冷焊,易除去,制备的少层石墨烯增强铝基复合材料的综合性能优异。本发明适用于制备石墨烯增强铝基复合材料。
1102
0
一种有基高熵合金复合材料及其制备方法,它涉及一种高熵合金及制备方法。本发明的目的是要解决现有高熵合金存在力学强度和塑性不能提高和脆性大的问题。一种有基高熵合金复合材料按质量百分比由1%~20%增强相和80%~99%有基高熵合金基体制备而成。一、称取有基高熵合金复合材料原料;二、采用电弧熔炼方法或感应熔炼方法对步骤一中称取的有基高熵合金复合材料原料进行熔炼,得到有基高熵合金。本发明制备的有基高熵合金复合材料的屈服强度为1200MPa~2100MPa,断裂强度为2300MPa~4000MPa,极限应变εp(%)为20%~50%。本发明可获得一种有基高熵合金复合材料。
848
0
一种石墨烯改性碳/碳复合材料的制备方法,涉及一种改性碳/碳复合材料的制备方法。本发明是要解决现有的碳/碳复合材料的性能差的问题。方法:一、石墨烯溶液涂层处理预制体;二、沥青液相浸渍预制体;三、重复步骤二2~3次,将沥青加热,然后将处理过的预制体浸入沥青中,常压浸渍,然后取出;四、浸渍后预制体的碳化;五、重复步骤二至步骤四4次,然后将样品放入碳化炉,在氩气保护下升温,保持温度,降温,取出样品,即制得石墨烯改性的碳/碳复合材料。本发明方法可提高石墨烯改性的碳/碳复合材料的石墨化度、弯曲强度和纤维束/基体界面剪切强度。本发明方法用于改性碳/碳复合材料。
本发明公开了一种航天非金属基复合材料结构连接用Ti-V-Al轻质记忆合金功能化处理方法,属于航天复合材料技术领域,本发明的方法是将电弧熔炼的Ti-V-Al合金铸锭固溶处理后进行热轧,到一定厚度后重新固溶处理并淬火,之后进行冷轧。对冷轧后的试样进行退火处理,即得到具有优异形状记忆效应的Ti-V-Al轻质记忆合金。本发明能大幅提高Ti-V-Al合金形状记忆效应,其完全可逆应变达到7.5%,是除TiNi合金外的最高值。经过热机械处理后的Ti-V-Al合金是一种在航空航天领域极具潜力的复合材料结构连接用轻质记忆合金。
一种基于半固态挤压制备定向排列SiC纳米线增强铝基复合材料的方法。本发明涉及一种基于半固态挤压制备定向排列SiC纳米线增强铝基复合材料的方法。本发明的目的是为了解决采用常规热挤压处理使SiC纳米线定向排列过程中对SiC纳米线损伤严重的问题。方法:一、非定向SiC纳米线增强铝基复合材料的制备;二、非定向SiC纳米线增强铝基复合材料及热挤压模具的预热;三、半固态挤压制备定向排列SiC纳米线增强铝基复合材料。本发明在固相线以上、液相线以下对SiC纳米线增强铝基复合材料进行热挤压处理。铝基体的晶粒边界发生熔化,铝基体处于固‑液混合状态,对SiC纳米线约束力小。SiC纳米线可以实现低损伤的定向排列。
1060
0
用于制造复合材料螺栓坯料成型方法,本发明涉及制备螺栓的方法。本发明要解决现有玻璃钢复合材料螺栓成型时螺牙与螺杆纤维不连续造成的螺栓结构强度、刚度降低的技术问题。方法:一、设计坯料铺层结构;二、铺放复合材料预浸料;三、裁剪,合模,固化;四、切割;五、加工至棒料。本发明的方法解决了玻璃钢复合材料螺栓成型时纤维不连续的难题。玻璃钢复合材料螺栓在坯料制造过程中,使用了网状结构的增强材料,保证了纤维的连续性,从而使玻璃钢复合材料螺牙与螺杆连接处的纤维连续。本发明用于制备复合材料螺栓。
建立纤维增强树脂基复合材料孔隙问题的表征与评价模型的方法,涉及纤维树脂基复合材料孔隙问题的表征与评价的技术。它解决了现有技术中复合材料的性能表征很难建立准确的预报模型的问题。本发明的方法为:首先采用光学显微镜和图像分析方法获得同铺层的复合材料层压板的孔隙的形貌特征参数,将其作为输入参数;并对含不同孔隙率的复合材料进行力学性能测试,获得力学性能参数,将其作为输出参数;然后将获得的所有输入参数和输出参数组成多个训练数据对;最后,建立神经网络模型,并采用获得的多个训练数据对所述神经网络模型进行训练、优化和测试,最终获得复合材料孔隙问题的表征与评价模型。本发明适合对现有各种复合材料建立表征与评价模型。
1173
0
一种高温介电性能PBO纤维复合材料的制备方法,目的是要在保证PBO纤维氰酸酯复合材料良好介电性能的情况下提高复合材料界面作用力,解决PBO纤维表面光滑与树脂界面粘接强度低等问题。制备方法:一、制备超支化PBO聚合物接枝液;二、PBO纤维束的浸润处理;三、PBO纤维束的脱酸处理;四、PBO纤维束的辐照接枝处理;五、PBO纤维氰酸酯复合材料的制备。本发明利用Co60γ射线辐照方法在PBO纤维表面接枝超支化PBO聚合物,增加了PBO纤维氰酸酯复合材料的界面结合强度,界面强度提高幅度为32~45.65%,且制得处理PBO纤维氰酸酯复合材料具有良好介电性能,有利于制备结构功能一体化的透波复合材料。
871
0
一种高强韧石墨烯增强铝基复合材料制备方法,涉及一种铝基复合材料的制备方法。目的是解决铝基复合材料制备时石墨烯在铝基体中分散不均匀、以及制备的复合材料存在强度‑韧性倒置的问题。方法:以石墨烯微片和铝金属粉末制备厚度为产品厚度2~2.5倍石墨烯微片增强铝基复合材料,与铝合金板材叠放进行累积复合轧制变形处理,热处理。本发明利用多道次累积复合轧制技术使石墨烯微片的片层逐渐打开、材料晶粒大幅度细化并形成复合界面,所得复合材料强度增加的同时,材料韧性没有降低,解决了石墨烯增强铝基复合材料强度‑韧性倒置的问题。本发明适用于制备石墨烯增强铝基复合材料。
692
0
一种改性硅树脂耐高温隔热涂层复合材料及其制备方法,属于隔热涂层制备技术领域。所述基体复合材料为玻璃纤维布增强聚酰亚胺树脂复合材料和玻璃纤维布增强RSN‑840硅树脂复合材料,涂层为经SiO2和云母改性的耐高温隔热RSN‑6018硅树脂涂层,为改善云母片在硅树脂中的分散性,采用KH550偶联剂改性。其中:经SiO2和云母改性的耐高温隔热RSN‑6018硅树脂和聚酰亚胺复合材料以及RSN‑840硅树脂复合材料具有很好的相容性,避免出现不能成膜和成膜不均的现象。外层经SiO2和云母改性的耐高温隔热RSN‑6018硅树脂复合材料层具有优异的耐高温性能,抗冲刷,抗烧蚀,高温下具有良好的耐热性,可有隔热性测试数据看出,涂层具有良好的隔热性,对内层聚合物复合材料起到了良好的热保护效应。
919
0
一种酚醛球/聚丙烯复合材料及其制备方法,本发明涉及一种复合材料及其制备方法,具体涉及一种改性的聚丙烯复合材料及制备方法,它要解决现有改性聚丙烯复合材料的刚性和模量较低的问题。该酚醛球/聚丙烯复合材料按质量百分比由70%~93%的聚丙烯,5%~15%的马来酸酐接枝聚丙烯,1%~20%的酚醛球和0.1%~3%的抗氧剂制成。制备方法:一、称取原料;二、烘干聚丙烯,对酚醛球进行洗涤和干燥;三、原料放入低速混合机混均,然后放入双螺杆挤出机中挤出复合材料,经切粒、成型完成复合材料的制备。本发明的酚醛球/聚丙烯复合材料机械性能良好,可用作汽车配件、电器、工程建筑等材料。
800
0
阻燃聚乙烯复合材料的制备方法,它属于阻燃复合材料制备的领域,具体涉及一种复合材料的制备方法。本发明是要解决现有的阻燃材料阻燃效果不彻底,且阻燃材料燃烧后易产生危害人体和环境的有害物质,燃烧时聚乙烯的熔融低落的技术问题。本方法如下:制备纳米氢氧氧铋包裹可膨胀石墨的粉体;将纳米氢氧氧铋包裹可膨胀石墨的粉体,经流变仪与聚乙烯混合,机压成型,冷却至室温,即得。本发明制备的阻燃聚乙烯复合材料阻燃含量低、效果好、燃烧无毒、生烟量小。
1033
0
低熔点合金涂覆陶瓷相增强体/铝基复合材料的制备方法,它涉及一种涂覆陶瓷相增强体的方法。本发明解决了溶胶凝胶方法在增强体表面涂覆涂层的工艺复杂的问题。本发明方法如下:将硝酸铋水溶液、硝酸铅水溶液、氯化铟水溶液及氯化锡水溶液中的两种或两种以上添加到稀硝酸溶液中所得的混合液与氨水溶液滴加到增强体溶液中至pH值为6~14,再将增强体制成预制件在350℃~1100℃的温度下保温,即得到涂覆金属氧化物的陶瓷相增强体,然后利用挤压铸造的方法制备复合材料。本发明方法工艺简单,缩短了复合材料的生产周期,应用本发明所得铝基复合材料在温度为25℃、频率为70Hz的条件下的阻尼值为0.016~0.018。
1209
0
本发明属于防护结构设计技术,涉及对陶瓷/复合材料防护结构的改进。它由一层陶瓷面板[1]和与陶瓷面板[1]粘接的背板组成,其特征在于,所说的背板为夹层板,该夹层板由两层纤维增强树脂基复合材料板[2]和夹在上述两层纤维增强树脂基复合材料板之间的泡沫铝芯板[3]组成,纤维增强树脂基复合材料板[2]和泡沫铝芯板[3]由板芯胶粘接构成夹层板。本发明所用夹层结构背板可在同等面密度的条件下为陶瓷面板提供刚性更大的支撑,充分发挥陶瓷材料高压缩强度的优势。夹层结构中的闭孔泡沫铝还可以延迟弹击时冲击波沿厚度方向的传递,延缓冲击波对陶瓷面板的破坏,提高整体防护结构的弹道极限速度。
755
0
一种SiO2陶瓷基复合材料的钎焊方法,本发明涉及复合材料的钎焊方法。本发明要解决现有SiO2陶瓷基复合材料表面活性钎料的润湿性极差,难以实现复合构件的高质量连接甚至于有效地连接,且采用钎焊方法连接SiO2陶瓷基复合材料-金属构件时,由于SiO2陶瓷基复合材料和金属材料的热膨胀系数不同,使得接头在钎焊过程中产生很大的残余应力的问题。方法:首先打磨,然后对SiO2陶瓷基复合材料表面机械打孔,再进行等离子体处理,最后钎焊SiO2陶瓷基复合材料与金属。本发明用于SiO2陶瓷基复合材料的钎焊方法。
1165
0
碳纤维复合材料桅杆的制造方法,它涉及一种桅杆的制造方法。本发明为解决现有金属桅杆的质量大、强度低、稳定性不好,限制了船的快速航行的问题。实现本发明的步骤:一、设计制备芯模;二、将干燥的碳纤维浸渍于树脂混合液中得到碳纤维复合材料;三、将碳纤维复合材料在芯模上逐层缠绕;四、加热固化;五、拆除芯模后即得到碳纤维复合材料桅杆的毛料,去除毛料两端的加工长度,去除毛刺,即得到碳纤维复合材料桅杆。由于本发明的桅杆是采用碳纤维复合材料制成的,使得本发明的桅杆的重量比金属桅杆的重量减轻43.4%,又由于碳纤维复合材料是层层交叉缠绕,因此提高了碳纤维复合材料桅杆的强度,增加了帆船的稳定性,使得帆船能够快速航行。
1213
0
本发明属于机械零部件设计领域,涉及一种碟形碳纤维复合材料组合压簧结构及其制造方法,是针对现有膜片弹簧开口处容易产生裂纹的问题所提出的,组合压簧包括由上至下依次设置的上压盘、上固定圈、C形碳纤维复合材料压簧组、下固定圈和下支撑盘,C形碳纤维复合材料压簧组上部与上固定圈通过螺栓安装在上压盘上,C形碳纤维复合材料压簧组下部与下固定圈通过螺栓安装于下支撑盘上,且上压盘与下支撑盘通过芯部套筒实现机构径向定位,C形碳纤维复合材料压簧组为四组至八组,且均匀分布于上固定圈和下固定圈的圆周方向,所有C形碳纤维复合材料压簧组构成组合压簧的弹性部分。本发明可在不拆卸安装轴的条件下实现C形碳纤维复合材料压簧的更换。
本发明公开一种航天防热用氮化硼‑锶长石陶瓷基复合材料及其制备方法,涉及陶瓷基复合材料的制备领域,所述复合材料的制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料粉体;S2:对所述原料粉体进行球磨,得到球磨粉末;S3:对所述球磨粉末进行搅拌烘干,得到原料粉末;S4:对所述原料粉末进行冷压,得到块体原料;S5:对所述块体原料进行热压烧结,得到航天防热用氮化硼‑锶长石陶瓷基复合材料。本发明提供的航天防热用氮化硼‑锶长石陶瓷基复合材料的制备方法,在保证氮化硼‑锶长石陶瓷基复合材料介电性能的前提下,使得制备的氮化硼‑锶长石陶瓷基复合材料具有良好的力学及可加工性能。
954
0
一种BN-MAS陶瓷复合材料及其制备方法,涉及一种氮化硼基陶瓷复合材料及其制备方法。本发明是要解决现有氮化硼陶瓷材料生产中烧结温度过高、烧结压力过大导致成本高、效率低的技术问题。一种BN-MAS陶瓷复合材料由MgO粉末、Al2O3粉末、非晶SiO2粉末和六方BN粉末制成。制备方法为:一、称量;二、球磨制浆;三、干燥制粉;四、装模预压;五、烧结处理,即得BN-MAS陶瓷复合材料。本发明的BN-MAS陶瓷复合材料的致密度为99.4%,抗弯强度为213.2MPa±24.8MPa,介电常数为5.81,介电损耗角正切值为6.57×10-3。本发明应用于BN-MAS陶瓷复合材料的制备领域。
中冶有色为您提供最新的黑龙江哈尔滨有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日