1283
0
本发明提供了一种无表面活性剂微乳液及其制备方法。所述无表面活性剂微乳液包括油相、水相和混合双亲溶剂;混合双亲溶剂为能与油相混溶的丁醇和能与水相混溶的乙醇组成的混合溶液。油相和水相的体积比为9:1~1:9。所述微乳液的制备方法简便,室温下将油相、水相和混合双亲溶剂按一定比例混合,搅拌均匀即可,易于工业化实施。本发明的微乳液可用于油田开发、日用化工、功能材料制备、药物载体和农药制剂等领域。
1008
0
本发明涉及一种连续纤维嵌入材料的一体化打印装置及打印方法,属于功能材料3D打印技术领域。预制带孔的聚合物圆柱体成丝棒,并将连续纤维穿过成丝棒的孔,成丝棒夹紧在成丝筒中,推进杆将成丝棒向下推送,成丝棒经过加热区,熔融的聚合物向下流动包裹在连续纤维表面,最终从成丝筒底部出来成型丝材,成型丝材经过测量剪切机构,直径不符合要求时剪断,直径符合要求直接进入进给机构,进给机构将成型丝材不断向下进给,送入打印头部件实现打印。优点在于:纤维与聚合物之间粘合性好,不会产生连续纤维的局部堆积,可按需打印不同直径的成型丝材,实现了连续纤维嵌入式高熔点聚合物的打印。
本发明涉及功能材料和高级氧化技术领域,且公开了一种可见光驱动下活化过一硫酸氢钾复合盐的CeO2/Co3O4光催化剂的制备方法,包括以下步骤:1)、2)、3)。该可见光驱动下活化过一硫酸氢钾复合盐的CeO2/Co3O4光催化剂的制备方法,通过制备过程绿色环保、制备工艺简单、反应条件可控以及成本低等优点,且将该四氧化三钴修饰二氧化铈p‑n异质结光催化剂与初始环丙沙星溶液混合,随后加入适量PMS在光照条件下进行光催化反应即可实现对环丙沙星的有效降解,能够有效避免环丙沙星出现难以从水体中去除的情况,从而有效的解决了催化剂对环丙沙星催化时间长、试剂用量大、光生载流子分离效率低和稳定性差的问题。
926
0
本发明涉及一种聚多巴胺纳米管的制备方法,属于功能材料技术领域。本发明制备方法以盐酸多巴胺为原料,在碱性环境中,加入少量的含铁金属盐,通过盐酸多巴胺的自由基聚合,得到聚多巴胺纳米管。利用本发明的方法制备的聚多巴胺纳米管具有管长与管径可调控的特征。纳米管的长度为100‑2500纳米,管径为50‑100纳米。制备聚多巴胺纳米管的方法简单、以简单的水/醇体系为反应溶剂,实现了环保的要求。本发明方法制备的纳米管的生物相容性好,具有很好的医学应用前景。本发明制备方法弥补了这一研究领域的不足,并极大的推动了聚多巴胺材料在化学化工、材料科学、生物医药及机械工程等领域的发展。
909
0
本发明公开一种抗菌复合布料及其制备方法,属于功能材料领域,该布料包括自上至下依次布置的基布、抗菌复合层和保护层;所述基布的上表面与外界环境接触,基布的下表面与抗菌复合层的上表面压制在一起,所述抗菌复合层的下表面与保护层的上表面压制在一起。本发明通过不同表面性质的基布、抗菌复合层和保护层相互配合形成复合布料,赋予了布料良好的抗菌透气性能,其中抗菌复合层具有良好的亲水性,可以迅速吸收水汽,传递到外表面,通过基布的上表面扩散到外部空间,有助于吸湿排汗;另外,抗菌复合层中负载的银离子和石墨烯,可以持久性的发挥广谱杀毒功能,该复合布料能够用于制作透气抗菌的医疗服装,避免产生发闷、不透气等情况。
1448
0
本发明属于无机功能材料技术领域,具体涉及一种含铬三维镍铝类水滑石薄膜及其制备方法与应用。所述的含铬三维镍铝类水滑石薄膜是在强酸性条件和铬离子的存在下,多孔阳极氧化铝模板的内外表面均生长出镍铝类水滑石晶体得到的。本发明制备条件温和、工艺过程简单、成功率高,制备得到三维薄膜上的类水滑石晶体与基底结合紧密,不易脱落。本发明得到的含铬三维镍铝类水滑石薄膜在紫外光催化降解有机污染物反应中,表现出优异的光催化活性,有效避免流失、团聚现象,易于分离和重复使用,在催化、吸附、分离等方面具有重要的应用价值。
1402
0
一种可分解有机污染物的活化沸石滤料的制备方法,属于环境净化功能材料领域,包括下述工艺步骤:制备硼镧钛三元复合前驱体,以乙醇、乙二醇、钛酸异丙酯、硼酸三丁酯、乙酰丙酮、硝酸镧水溶液和活化沸石滤料经搅拌和超声处理制得;热反应挂膜,将上述前驱体在不锈钢反应釜中设定温度和压力反应,过滤清洗;固化成膜,将滤饼干燥、煅烧即制得可分解有机污染物的活化沸石滤料,具有在光照条件下分解有机污染物的活性。
761
0
本发明属于环境功能材料和水处理技术领域,具体涉及一种改性三维石墨烯复合材料及其制备方法与应用。该方法将聚丙烯酰胺、β‑环糊精与氧化石墨烯混合,然后通过一步化学还原法合成改性三维石墨烯复合材料。该材料具有三维孔结构和丰富的官能团结构,避免了二维石墨烯的团聚问题,可显著提高吸附剂对水中抗生素的吸附性能。其制备方法简单,条件温和,所用的改性材料都属于绿色化学试剂,整个过程中不产生二次污染,制备的吸附剂对环境无毒害作用。将该材料用于去除水中的环丙沙星,成本低且去除率高达73.63%,所用三维石墨烯能简单快速的从溶液中分离,易于回收利用。
本发明公开了一种利用废弃花生壳及铁锈通过固相烧结法一步制备Fe3O4/C磁性复合材料的方法,属于复合功能材料的合成技术领域。本发明的技术方案要点为:将花生壳和铁锈分别经过清洗、干燥处理后研磨,再将研磨后的花生壳粉料和铁锈粉料按质量比1:2的比例混合研磨1‑2h,取研磨后的混合粉料置于流量为10mL/min的体积百分数为3%H2/97%Ar还原气氛的烧结炉中,以5℃/min的升温速率升温至550℃并保温30min,然后冷却至室温得到Fe3O4/C磁性复合材料。本发明所制得的Fe3O4/C磁性复合材料结构优异在染料吸附方面效果显著,且在磁场下可方便分离,可重复利用。另一方面实验所需的条件和仪器简单易得,可实现工业批量化生产。
本发明公开了一种以微生物细胞分泌液为基质制备生物兼容的四氧化三铁纳米颗粒的方法及其应用,属于生物无机纳米功能材料的合成技术领域。本发明的技术方案要点为:将微生物接种到培养基中于30‑37℃培养24‑72h,再通过离心的方式除去微生物细胞得到微生物细胞分泌液;向微生物细胞分泌液中加入可溶性亚铁盐使混合体系内亚铁盐的质量浓度为5‑20mg/mL,室温搅拌2‑9h,再用碱液调节混合体系的pH值至碱性,反应4‑14h后通过磁铁将纳米颗粒与混合体系分离,然后经过干燥得到生物分子包裹的四氧化三铁纳米颗粒。本发明所制备的四氧化三铁纳米颗粒纯度较高,生物兼容性好,具有较好的水分散性和优异的光热性能,在诸多领域均具有很好的应用前景。
802
0
本发明涉及一种碳纳米纤维复合材料的制备方法,属于复合材料技术领域。本发明利用纳米纤维素具有易于成膜与凝胶化的特性,可以作为结构稳定与机械性能优良的载体材料或者骨架支撑材料,纳米纤维素具有不同的结构形态,各种微纳米尺度的无机或有机纳米材料可扩散或填充其中,以提高其比表面积,纳米纤维素原有的高吸水性、溶胀性、生物相容性等特性,与各类无机或有机纳米材料的特定导电性能相互融合在一起,进而产生具有高导电性、光电转换性、电化学氧化还原特性的特殊功能材料,导电高分子不但可以通过溶液分散与纳米纤维素形成导电膜材料,而且可以通过原位聚合方式得到导电高分子/纳米纤维素导电复合材料。
909
0
本发明涉及一种多元复合接枝改性高吸水树脂的制作方法,属于功能材料技术领域。将木粉、棉杆粉和去离子水搅匀,缓慢升温使木粉和棉杆粉膨胀糊化,结束后将糊化液降至50℃;称取丙烯酸并稀释,在冰水浴中用NaOH溶液缓慢中和获得单体溶液;糊化液温度稳定后,加入引发剂,搅拌反应;搅拌完成后将制备的单体溶液缓慢加入糊化液中,升温并搅拌;之后加入钠基膨润土,搅匀后加入交联剂搅拌反应,完成后,将反应产物烘干,粉碎,再用丙酮提纯得最终产物。本发明减少了对石油资源的使用,降低了生产成本,具有节能、可降解、环境友好等优势,为木材加工及农作物废弃物的处理和利用提供了新的方向,可用在农林种植和生理卫生等方面。
1257
0
本发明涉及一种检测还原性气体的变色材料,可以根据还原性气体的存在自身变色,属于功能材料领域。包括设在载体上的显色剂;所述显色剂采用强氧化性的高锰酸钾、高锰酸钠,所述载体采用热稳定性和化学稳定好的氧化铝、二氧化硅;所述载体为白色多孔成型材料或者粉末状材料。本发明的有益效果是:可以方便的根据颜色变色进行观测,而且不含挥发性的有机物也不用使用液体溶剂,使用过程更为便利。
1446
0
本发明公开了在涂有雷达吸波涂层的物体表面加涂红外隐身涂层的方法,属于功能材料技术领域。其具体过程为:1、配制相应的红外隐身涂料各层涂料载体、红外隐身涂料的甲组分、红外隐身涂料的乙组分待用;2、清洁涂有雷达吸波涂层的物体表面;3、将待用的内层涂层载体与甲组分、乙组分混合并搅拌均匀,采用压缩气体的方式喷涂在雷达吸波层表面,干燥;4、同喷涂内层方式一样,依次取待用的涂层载体与甲组分、乙组分混合并搅拌均匀,采用压缩气体的方式进行喷涂,干燥,直至最外层。其优点为:红外发射率可低至0.25以下,同时可在1~18GHz全频段范围内显著改善涂层的雷达吸波性能,实现优异的红外/雷达兼容隐身性能。
1221
0
本发明属于功能材料领域,具体涉及一种再生物磁性化合物复合材料及其制备方法,该材料中各成份的重量百分比为:三氧化二铬2-5%,膨润土11-15%,废玻璃铁镨磁性氧化物复合体20-25%,其余为酚醛树脂;本发明的目的是提供一种再生物磁性化合物复合材料,无污染而且具有振动衰减作用,阻尼性能较高;本发明的另一目的是提供一种再生物磁性化合物复合材料制备方法,该制备方法工艺简单,生产成本低,适于工业化生产。
1105
0
本发明提供了一种在锌基底表面制备超疏水膜的方法,属于功能材料技术领域。该方法是将锌片基底超声清洗,用氮气吹干后,先用甲酰胺水溶液进行氧化处理,在锌片表面形成了棒状纳米氧化锌阵列;然后通过低表面能物质硬脂酸,十二羟基硬脂酸,正十二烷基硫醇修饰后,在锌片基底表面形成高静态接触角、低滚动角的超疏水膜。该超疏水膜稳定性较好,在空气中放置长时间也不发生变化,抗酸碱性较好,可用于防水,抗冻,防雪,抗金属腐蚀方面。
1266
0
本发明涉及一种硒化锌纳米带的制备方法,属于纳米材料制备技术领域。本发明采用双坩埚法,将静电纺丝技术与硒化技术相结合,制备了ZnSe纳米带。本发明包括三个步骤:(1)配制纺丝液。将Zn(NO3)2·6H2O和PVP,加入到DMF溶剂中,形成纺丝液;(2)制备ZnO纳米带。采用静电纺丝技术制备PVP/Zn(NO3)2复合纳米带,再进行热处理得到ZnO纳米带;(3)制备ZnSe纳米带。采用双坩埚法,用硒粉对ZnO纳米带进行硒化处理,得到ZnSe纳米带,具有良好的晶型,宽度为0.6~2.2μm,厚度为63.3nm,长度大于100μm。硒化锌纳米带是一种新型的重要功能材料,将在激光器、生物医学、平板显示、太阳电池、信息的存储与传输、闪烁器、催化等领域得到应用。本发明的制备方法简单易行,可以批量生产,具有广阔的应用前景。
1231
0
本发明公开了一种芳香类1, 2, 4, 5‑四嗪化合物的制备方法,该方法是将芳基偕二氟烯烃与水合肼反应后,反应液采用饱和氯化铵溶液淬灭,所得反应产物采用乙酸乙酯和饱和碳酸钾溶液溶解后,置于空气中反应,即得芳香类1, 2, 4, 5‑四嗪化合物;该方法操作简单、反应条件温和、成本低、副产物少、收率高,可以得到对称或不对称的芳香类1, 2, 4, 5‑四嗪化合物,不受底物局限,以便建立芳香类1, 2, 4, 5‑四嗪化合物库,为生物标记、新药创制和功能材料等提供原料来源。
1437
0
大面积、均匀性、快响应WO3电致变色器件及其制备方法,属于功能材料技术应用领域。将钨粉与双氧水进行反应,然后加入无水乙醇,用醋酸调节pH2?3,得到前驱体溶液;选用平板石墨电极作为对电极,ITO平板导电玻璃为工作电极,选择Ag/KCl作为参比电极,将工作电极与对电极进行平行相对放置,采用恒电流沉积模式进行电沉积,在ITO导电玻璃表面得到WO3电致变色薄膜;往碳酸丙烯酯溶剂中加入一定量的LiClO4,搅拌溶解;然后加入聚甲基丙烯酸甲酯粉末,调整到该电解液的状态接近固态。将WO3电致变色薄膜与空白的ITO玻璃通过步骤固态电解质进行粘合,然后成型处理;对边缘进行密封处理即可。本发明方法简单。
1341
0
本发明属功能材料制备技术领域,涉及一种三氧化二锰等级结构材料的制备方法,向草酸水溶液中滴加可溶性锰盐水溶液,在恒温并且搅拌条件下反应直到前驱物沉淀生成,反应结束后,再经过滤、水洗、干燥和煅烧后即获得三氧化二锰等级结构材料。产品是由大量的氧化锰纳米粒子组装而成的片状等级结构材料。片的尺寸在10~20μm之间,氧化锰纳米粒子的尺寸在20~30 nm之间。该工艺制备成本低,操作容易控制,具有较高的生产效率,可以实现工业化大量生产。本发明所制备的三氧化二锰等级结构材料作为电极材料使用具有较高的比电容,和良好循环性能。
827
0
本发明涉及功能材料技术领域,具体涉及一种自分散SiNWs粉体的制备方法。自分散SiNWs粉体的制备方法,先称取一定量的Ni(NO3)2于40mL烧杯中,缓慢加入蒸馏水至Ni(NO3)2完全溶解;再加入Si粉,进行搅拌烘干,恒温65℃,时间约1h;将烘干粉体装入氧化铝陶瓷管,并一同放入石英管,其中硝酸镍分解温度300℃,保温20min;氢还原反应温度700℃,还原性气体为含5%H2的Ar,保温30min,冷却后得到Ni包Si结构粉体;进行共晶析出反应,然后开始升温,升温速度5℃/min,到达温度后进入保温阶段,将纯氩气换为5混合气体,反应完成后产物随炉冷却,得到SiNWs粉体。本发明简化了制备工艺和降低了成本,且所制备的SiNWs具有自分散特征。
1627
0
本发明公开了一种芴基给受体型纳米聚合物、制备方法及其应用,该纳米格子聚合物中纳米格子片段是以芴基衍生物为电子给体单元并与电子受体单元交替排列成方环形的刚性结构。制备方法:以预留有卤素端基的纳米格子片段(Ⅱ)与聚合片段(Ⅲ)进行聚合反应,即得聚合物。本发明提供的聚合物材料具有合成方式模块化、高拓展性、高的热学、电化学、光学稳定性;可减少薄膜溶剂依赖性;实现大面积可溶性加工;精确调控孔径尺寸;实现对带隙、能级排布的精确调控等优点,在有机太阳能电池、存储及忆阻、传感、检测等光电功能材料领域有潜在的应用前景。
956
0
本发明涉及一种基于超薄二氧化钛纳米片的湿度传感材料的制备方法,该方法为一步水热法制备超薄二氧化钛纳米片的湿度传感材料,用聚环氧乙烷‑聚环氧丙烷‑聚环氧乙烷三嵌段共聚物(P123)作为表面活性剂,乙二醇调节晶粒生长,以获得大的比表面积、增加材料表面缺陷,从而提高材料的湿敏性能。通过本发明所述方法获得的超薄二氧化钛纳米片的湿度传感材料能够实现在室温下(25℃)对11%‑95%湿度的灵敏检测,检测时间为1秒,具有工作温度低、温度响应范围宽、灵敏度高、检测限高的特征。使用超薄二氧化钛纳米片的湿度传感材料为空气湿度传感器功能材料,通过测量不同湿度下水蒸气吸附至材料表面时材料电阻的变化达到对湿度进行传感的目的。
1108
0
本发明公开了一种在导卫辊表面制备耐磨抗热涂层的方法。包括导卫辊表面预处理;硬质合金复合粉末的配制;激光熔覆:通过将步骤二制成的混合粉末送入导卫辊表面,通过激光熔覆技术熔覆在导卫辊表面。本发明工艺具有抗热、耐磨性能优异的硬质合金复合粉末作为功能材料,应用激光熔覆的工艺方法将具有良好抗热耐磨性能的合金粉末均匀地熔覆在辊的表面,形成细小均匀、层深可控、高质量、与基体形成良好的冶金结合的硬面层,可显著提高导卫辊的耐磨性和抗热疲劳的能力。
864
0
本发明属于功能材料技术领域,具体涉及一种具有高导电性的磁流变液及其制备方法,包括以下质量百分比的组分:39.8%~90%载液、0.2%~2%表面活性剂、8%~60%镀银羰基铁粉;本发明制备镀银羰基铁粉,采用化学镀的方法;本发明制备磁流变液的方法为,将39.8%~90%载液、0.2%~2%表面活性剂用混合机搅拌均匀后,加入8%~60%镀银羰基铁粉,通过粉碎装置研磨1~4小时,制备成磁流变液。本发明的磁流变液具有高导电性,制备工艺简单,可实现工业化生产的优点。
1102
0
本发明涉及功能材料技术领域,具体涉及一聚丁二烯接枝聚苯乙烯胶乳改性水泥砂浆的制备方法。聚丁二烯接枝聚苯乙烯胶乳改性水泥砂浆的制备方法,包括如下步骤:(1)聚丁二烯接枝聚苯乙烯胶乳的制备;(2)聚丁二烯接枝聚苯乙烯胶乳的凝聚与后处理;(3)聚丁二烯接枝聚苯乙烯胶乳改性水泥砂浆的制备。本发明制成的聚丁二烯接枝聚苯乙烯胶乳改性水泥砂浆的结构较致密,其中有桥接结构、互穿网络结构以及孔洞结构,本发明适用性强,适合大范围推广。
1139
0
本发明涉及功能材料技术领域,具体涉及一种水热法制备TiO2和ZnO纳米花光阳极的方法。水热法制备TiO2和ZnO纳米花光阳极的方法,其特征在于:包括如下步骤:TiO2纳米介孔结构薄膜作为衬底,分别用无水乙醇、去离子水清洗氧化钛光阳极;配置Zn(CH3COO)2和NaOH水溶液,搅拌后澄清,将两种溶液混合并不断搅拌;将TiO2光阳极导电面向下斜靠在反应釜内衬中;把反应釜移入烤箱中,取出后自然冷却,分别用无水乙醇、去离子水交替清洗ZnO纳米花,以除去表面悬浮的颗粒物,形成TiO2/ZnO纳米花复合薄膜光阳极。通过本发明纳米花光阳极制成的染料敏化电池比传统的TiO2电池在短路电流、开路电压、填充因子、转化效率都得到一定程度的提高。
1323
0
本发明公开了一种氧化亚铜修饰的玻璃纤维的制备方法,属于无机纳米功能材料制备技术领域。本制备方法包括溶液混合‑振荡反应‑洗涤‑干燥工序。该方法制备的氧化亚铜修饰玻璃纤维呈棒状,表面参差不平,极大地增加了玻璃纤维的表面粗糙度,增加了玻璃纤维的比表面积;振荡反应过程于室温常压下进行,反应条件温和,降低了对能源消耗的需求,符合可持续发展的要求,同时避免了采用超声处理等步骤对玻璃纤维结构本体的破坏;符合大批量高粗超度玻璃纤维的生产要求,易于实现工业化生产。
955
0
本发明属于功能材料与电热元件领域,特别涉及一种石墨烯频谱护眼罩及其制备方法。石墨烯频谱护眼罩包括:护眼罩外装饰层、绝缘保护层、有机硅胶层、石墨烯纳米远红外负离子复合纤维导电发热膜,石墨烯纳米远红外负离子复合纤维导电发热膜的上下两面分别通过有机硅胶层连接绝缘保护层,绝缘保护层的外面分别设置护眼罩外装饰层。本发明以石墨烯为发热原料,与植物纤维复合制作出石墨烯纳米远红外负离子复合纤维导电发热膜,再通过有机硅胶与无纺布棉布等复合制成各种形状的护眼罩,利用石墨烯透明导电特性作为电发热薄膜,具有发热效率高、发热均匀的显著特点。
1091
0
本发明公开了一种Mg掺杂ZrO2介观晶体及其制备方法,属于金属氧化物功能材料的制备领域。本发明将硝酸镁、氧氯化锆和尿素按比例溶解于水中形成混合溶液,经150℃水热反应5h,制得所述Mg掺杂ZrO2介观晶体。本发明制备方法简便易行,成本低,介观晶体产率高;所制得的Mg掺杂ZrO2介观晶体具有良好的单分散性,呈类球状,直径为50~100 nm,BET比表面积高达155~164 m2/g,是一种优良的水煤气变换催化剂载体。
中冶有色为您提供最新的有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日
2026年01月23日 ~ 24日