903
0
本发明涉及一种硅藻土吸附材料的制备方法,所述的方法包括如下步骤:将硅藻土矿粉与0.1~10mol/L的强碱溶液混合,所述硅藻土矿粉与强碱溶液质量比为1∶2~10,在20~100℃下搅拌反应5分钟~50小时,抽滤,用水洗涤直至滤液呈中性,过滤滤饼烘干、粉碎至过200目筛得到所述硅藻土吸附材料。本发明采用碱浸反应的粉体改性方法具有方法简单,效果明显的特点;用本发明制备的新型硅藻土吸附材料吸附水体中含亚甲基兰(MB)、Cr6+或Pb2+等环境污染物效果明显,有利于实现低成本、高效率的废水净化。
774
0
本发明公开了一种酶电极,为按照如下步骤制备而得:利用DCM降解菌MethylobacteriumH13制备获得重组工程菌,经诱导培养表达和纯化,得DCM脱卤酶纯酶液;将DCM脱卤酶纯酶液与海藻酸钠进行混合,得包埋料;将包埋料涂抹于电极基体表面,然后经Ca(NO3)2固定等,得酶电极。本发明还同时提供了利用上述酶电极进行的基于电化学的辅酶还原型谷胱甘肽GSH再生方法,包括在阴极电解槽注入含DCM废水、作为辅酶的还原型谷胱甘肽GSH,进行恒定电流电解。本发明利用电化学技术,以酶电极为媒介,为辅酶GSH再生提供充足的电子,促进GSSG再生成GSH。
1103
0
本发明公开了一种黄黄色杆菌DT8(Xanthobacter?flavus?DT8)及在降解环醚类化合物中的应用,以含黄黄色杆菌DT8的菌剂为酶源,以环醚类化合物为底物,于无机盐培养基中,在30~37℃,120~160r/min摇床培养40~48h,使底物环醚类化合物降解;所述环醚类化合物为四氢呋喃和1,4-二噁烷;本发明黄黄色杆菌DT8菌株易于扩大培养,具有高效降解环醚类化合物的性能,适用于含环醚类化合物的废水或废气的生物降解,环境友好,具有极其重要的工程价值和经济价值。
1083
0
本发明公开了一种Fe/N/S三掺杂双层空心介孔碳材料及其制备方法与应用。所述的Fe/N/S三掺杂双层空心介孔碳材料通过简易牺牲模板法形成具有复杂多壳结构的催化材料,并且可应用于处理废水中的对硝基苯酚。本发明所述的催化材料涉及多元素掺杂的化学组成可以提供丰富的活性位点;独特的中空双层介孔结构可以充分暴露活性位点和促进反应物传质;催化材料在多次重复使用中,能够保持良好的化学和机械稳定性。
863
0
本发明公开了一种Fe‑N/C复合催化剂及其制备方法,其制备方法包括以下步骤:(1)将铁源前驱体和氮化碳加入到去离子水中,搅拌蒸发,蒸干后真空烘干,研磨成粉末;铁源前驱体的质量以铁元素的质量计,铁源前驱体和氮化碳的质量比为1∶0.1~10;(2)将步骤(1)得到的粉末在惰性气体保护下煅烧1~5h,冷却后得到所述的Fe‑N/C复合催化剂;煅烧温度为500~700℃。本发明还公开了该Fe‑N/C复合催化剂在处理有机废水中应用。该复合催化剂稳定,铁的溶出量较少,可以多次重复使用,并且Fe‑N/C复合催化剂具有磁性,便于回收。
1193
0
本发明属于废水生物处理领域,涉及一种通过形成污泥聚集体快速控制污泥膨胀并能长期稳定的方法。该方法包括如下步骤:(1)取膨胀污泥并浓缩(重力浓缩或离心浓缩);(2)加入不溶于水的阳离子高分子聚合物;(3)搅拌均匀后加入冰乙酸;(4)投加碱液调节混合液pH值至碱性;(5)将形成的污泥聚集体清洗浸泡后收集并返回到反应器中正常运行,污泥膨胀问题迅速得到控制且能保持长期稳定。本发明操作简单方便、效果快速明显,易于实际应用。
814
0
本发明公开了一种CoFe2O4/N/C空心纳米球及其制备与应用,所述纳米球以SiO2纳米球为模板,在pH8‑9的条件下使多巴胺与钴、铁金属离子络合在模板上生成聚合物壳层,碳化退火后形成负载有CoFe2O4金属纳米粒子的氮掺杂碳材料,最后用强碱去除SiO2模板制备成CoFe2O4/N/C空心纳米球。本发明以SiO2纳米微球为牺牲模板所制成的N/C基体空心结构,具有较大的比表面积及孔隙率,提高了壳层所负载的CoFe2O4纳米金属粒子的分布,增强了对废水中有机污染物的吸附及催化活性,拓宽了应用pH范围,且因其磁性可回收再利用,节约资源。
818
0
本发明公开了一种不锈钢氧化层清洗剂及其制备方法和应用,所述不锈钢氧化层清洗剂由以下组分组成:30%~50%的环糊精,10%~20%的有机酸,10%~20%的复合表面活性剂,余量为水;所述环糊精为α-环糊精、β-环糊精、γ-环糊精、羟丙基β-环糊精、甲基化β-环糊精中的一种或两种以上的混合物;所述有机酸为甲酸、乙酸、丙酸、柠檬酸、草酸、马来酸、月桂酸中的一种或两种以上的混合物;所述复合表面活性剂为油酸钠、烷基糖苷、十二烷基硫酸钠、椰子油脂肪酸二乙醇酰胺、脂肪醇聚氧乙烯醚、聚乙二醇中的两种以上的混合物。本发明提供的不锈钢氧化层清洗剂制备方法简单,使用操作方便,使用寿命长,废水产生量少,各组分易生物降解,绿色环保,并且成本低廉。该不锈钢氧化层清洗剂具有替代目前以无机酸为主的不锈钢氧化层清洗剂的潜力。
1167
0
本发明公开了一种基于埃洛石的CoAl‑LDH微球复合材料的制备方法,首先将埃洛石粉体与NH4F均匀混合,再在管式炉中进行煅烧,然后和Co(NO3)2·6H2O、尿素混合均匀进行水热反应,水热反应后的混合液经抽滤分离和真空干燥操作后制备得到CoAl‑LDH微球复合材料。该复合材料具有独特的由CoAl‑LDH纳米片组成的微球结构,埃洛石不仅为该复合材料提供了铝源,而且无需模板即可形成微球。该CoAl‑LDH微球复合材料对污水中的抗生素等污染物具有较好的催化降解作用,可用于高效处理污染废水中有机污染物。
1055
0
一种用于水体COD检测的光谱样本生成方法,包括以下步骤:步骤1,利用变分模态分解算法获取不同类型真实样本的光谱特征分量Apc(λ)和残差分量Ares(λ);步骤2,用三阶高斯函数fres(λ)统一表达所有不同类型样本的残差分量,并确定参数ai、bi、ci的可调范围,通过调整参数得到不同的残差分量;步骤3,用生成对抗网络得到不同类型水样的新特征分量Apc‑new(λ);步骤4,将不同的残差分量和新特征分量叠加重构,得到最终新生成的光谱样本Anew(λ)。本发明生成的样本不仅可以保留COD物质的原有光谱特性的同时,还具有多样性;回归模型在不同工厂废水的COD测量中能够达到更好的预测精度。
793
0
本发明公开一种2,3,5‑三氯吡啶的制备方法,该制备方法以2,3,5,6‑四氯吡啶为起始原料,溶于弱碱性溶剂中,再以导电材料为阴极,以化学惰性导电材料或涂覆贵金属氧化物的钛金属材料为阳极的电解槽中进行电解反应,温度为20~50℃,电流密度为1~5A/dm2,在反应过程中利用阳极液配比来稳定阴极溶液pH值,pH=8~9,反应0.5Q*~2Q*时间后,进行分离纯化获得2,3,5‑三氯吡啶;本发明方法阴极液的pH可以控制在8~9范围内,避免了利用惰性导电材料来制备2,3,5‑三氯吡啶时pH不稳定导致的过度脱氯、选择性低、副产物多的问题;避免了2,3,5,6‑四氯吡啶锌粉还原中大量的含锌废水,降低了三废的处理成本;电极材料廉价、易得,稳定;电解可在常温下进行;合成2,3,5‑三氯吡啶选择性大于80%,收率高于60%。
1106
0
本发明公开了一种螺旋二氧化钛光电极及其制备方法和应用,本发明螺旋二氧化钛光电极的制备方法包括以下步骤:取金属钛片进行化学抛光后,置于含有氟化铵、甘油和蒸馏水的电解液中,采用电化学脉冲阳极氧化法在金属钛片基底上原位生长螺旋二氧化钛,所得反应后的样品经蒸馏水清洗、氮气吹干后,再高温煅烧,即形成所述的螺旋二氧化钛光电极。本发明的螺旋二氧化钛光电极可以拓展TiO2光响应范围,促进光生电子‑空穴分离,进而实现对水体中双酚A的有效去除,且螺旋二氧化钛光电极在模拟太阳光下应用于光电催化降解废水中双酚A的效果优于常规的二氧化钛纳米管。
本发明公开了一种以硫酸亚铁为原料制备铁基催化剂的方法,属于催化剂及其制备领域,包括:利用去离子水溶解硫酸亚铁得到硫酸亚铁溶液,再将草酸倒入硫酸亚铁溶液中,搅拌、混合均匀,得到黄色浑浊液;对黄色浑浊液进行离心分离得到黄色沉淀物,取出黄色沉淀物,将单糖倒入沉淀物中搅拌均匀,经过干燥和焙烧变为黑色固体,得到铁基催化剂。本发明能够简单而有效的降低“硫元素”对催化剂反应性能毒害,保证催化剂的反应性能,操作简单,废水产生量少。
909
0
本发明公开了一种磁性负载型纳米钯/铁颗粒催化剂,以四氧化三铁为载体,负载有纳米钯/铁颗粒,所述纳米钯/铁颗粒与载体的质量比为1:1~10;所述纳米钯/铁颗粒中Pd、Fe的质量比为0.25~0.75:100。并公开了所述的磁性负载型纳米钯/铁颗粒催化剂在催化脱氯处理含氯废水中的应用。本发明提供的负载型纳米钯/铁颗粒的制备工艺简单,条件温和,催化剂易于分离,并且催化剂还原脱氯能力强,相比没有负载的纳米钯/铁颗粒,磁性负载型纳米钯/铁颗粒的还原脱氯2,4-D的处理效率可提高41.1%~110.4%。
本发明公开了一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用。该催化剂以钴盐和锌盐为金属源,2‑甲基咪唑为C源,ZIF‑67@ZIF‑8为牺牲模板,采用高温煅烧法制得。本发明中的臭氧催化剂为正十二面体结构,与常见的改性活性炭相比,其活性金属负载量及活性位点增加,具有可控的结构,较大的比表面积及磁性回收特点;本发明制备过程简单,在臭氧化处理制药中间体废水的过程中,对有机污染物底物和COD均有良好的去除率,且Co‑Zn@NC的金属离子浸出率低,稳定性好,而且重复使用率实验证明其可多次循环使用,具有较高的实用价值。
979
0
本发明公开了污水处理装置,包括污水罐,所述污水罐的顶部开设有投料口,所述污水罐的一侧开设有排水口,所述污水罐的一侧底部开设有排污口,所述污水罐的另一侧顶部开设有污水口,所述污水罐的顶部一侧装设有遮阳架,所述遮阳架上开设有一体式的导轨,所述遮阳架的内部装设有遮阳布;在该装置的顶部装设有一个遮阳架,遮阳架内装设有可收放的遮阳布,当装置在使用时将遮阳布展开盖设在装置的顶部,防止罐体温度过高,废水发酵产生有毒物质和气体,在装置的基座上装设有可减震的结构,在使用运输或者吊设安装时,若罐体产生震动偏移,基座内的减震环可减低横向的晃动,第二弹簧可抵消装置的垂直晃动幅度,提高了该装置的稳定性。
1103
0
一种用于吸附废水中重金属离子的吸附剂制备方法,包括以下步骤:1)以铜藻为原料,风干、清洗、干燥后粉碎;2)铜藻颗粒中通入饱和水蒸汽至指定压力,保持一定时间,之后瞬间卸至常压;3)再用甲醛‑硫酸的混合液加热回流,过滤,用去离子水冲洗滤渣,烘干至恒重,得到吸附剂。本发明原料来源广泛、价廉易得,对水中典型重金属污染物铬离子具有较高的去除率,而且便于分离、回收和再利用,无二次污染,实现了资源合理利用,具备良好的经济、环境效益。在污水治理方面具有广泛的应用前景。
749
0
本发明公开了一种电絮凝反应器,包括絮凝池,所述絮凝池内设有电絮凝装置,所述电絮凝装置包括超磁致伸缩驱动器及集成振动板,所述集成振动板上设有一组导杆,所述导杆上固定设置电极杆,所述超磁致伸缩驱动器的振动输出轴固定在所述集成振动板的中心,通过超磁致伸缩驱动器的连续高频振动带动固定在集成振动板上的导杆高频振动,使得与导杆相连的电极杆相应产生高频振动。本发明的有益效果是:将电极杆通过导杆与超磁致伸缩驱动器相连接,通过超磁致伸缩驱动器的连续高频振动,使得电极杆与废水产生在液固两相结合面的摩擦作用,减少了电极杆阳极的浓差极化现象。
1183
0
一种气体驱动的空化系统,包括空化元件,所述空化元件包括T型三通管和汇合管,T型三通管的左端、上端、右端分别设有左接口、上接口、右接口,其中,左接口通过管路与液体输送组件连接,上接口通过管路与气体输送组件连接,右接口通过螺纹连接有汇合管,汇合管的右端通过管路与产品储罐连接;液体输送组件向T型三通管的内腔输送原料液;气体输送组件向T型三通管的内腔输送压缩气体源;所述原料液与压缩气体源在T型三通管的内腔中汇合后,经由汇合管高速喷出进入产品储罐。本发明还提供一种气体驱动的空化系统的空化方法。本发明所需设备简单、操作条件温和且能耗较低,可广泛应用于废水中亚甲基蓝、罗丹明B等难被氧化有机物的降解。
922
0
本发明涉及一种甾体发酵后提取新方法,其包括以下工艺步骤:发酵液升温灭活;初始膜水通量的测定,发酵液进行膜过滤收集截留液,再进行膜的清洗,洗至初始膜水通量;所得截留液继续用甲醇萃取,分层得到甾体产品甲醇萃取液,再继续浓缩至粘稠状加水分散过滤得粗品;粗品再用第一种溶剂升温打浆,降温过滤得一精,一精再用第二种溶剂溶解、脱色、重结晶即得成品。本发明设计合理,工艺简单,可操作性强,工作环境毒害性小,不仅避免了传统工艺全萃法的的乳化难分离现象,而且提供了一种新型的分离方法,避免了有毒萃取有机溶剂的使用,解决了废水处理问题。该法成本低,收率高,最终产品符合市场品质要求。
1161
0
本发明涉及一种粗生物柴油中碱催化剂的脱除方法,步骤如下:采用甘油为萃取剂脱除粗生物柴油中碱催化剂,萃取温度为60-150℃,操作压力为常压,粗生物柴油与甘油质量比在10-1之间。本发明与现有技术相比,有益的效果是:1、通过生物柴油副产物甘油为萃取剂脱除生物柴油中碱催化剂的方法,避免了水洗工艺造成的废水问题;2、甘油相中溶解的碱催化剂通过冷却结晶方式分离出来,甘油和碱催化剂可循环套用在生产工艺,减少生产成本;3、碱催化剂的有效脱除,避免生物柴油高温真空精馏过程中的醇解,有利于生物柴油精馏得率的提高。
1206
0
本发明公开了一种磷排放限制下重组草铵膦脱氢酶工程菌的高密度发酵方法,将重组草铵膦脱氢酶工程菌接种至发酵培养基中,在初始通气量为5L/min、初始搅拌转速300rpm、初始溶氧为100%的条件下,37℃发酵培养至OD600值为8‑10,向发酵液中加入终浓度5‑15g/L乳糖,通过补料培养基和甘油调节pH,发酵培养至OD600在100‑120之间,将发酵液离心,获得含重组草铵膦脱氢酶的湿菌体;本发明不需要添加磷酸调节pH值,对环境污染小,废水处理更容易,发酵液中磷浓度1.15×103mg/L,OD600达到100‑120之间,菌体在60℃稳定性相对于磷酸调pH值提高了1.6倍。
1155
0
本发明公开了一种铁碳微电解耦合内源反硝化/厌氧氨氧化的脱氮除磷装置及方法,装置包括原水箱、铁碳微电解耦合厌氧氨氧化反应器、除磷除有机物出水水箱、短程硝化反应器、短程硝化出水水箱。本发明采用铁碳微电解技术耦合厌氧氨氧化工艺处理城市污水,在实现同步脱氮除磷的同时,协同铁碳原料中的零价铁和原电池反应生成的亚铁离子作为电子供体还原硝酸盐氮生成氮气,有效参与氮素转变过程。同时,铁离子也可以通过静电中和与带负电荷的微生物细胞结合,促进微生物聚集体的形成,从而加速厌氧氨氧化污泥的颗粒化进程。铁碳微电解除磷过程将吸收废水中的溶解氧,为内源反硝化/厌氧氨氧化工艺创造厌氧环境。
792
0
本发明公开了一种基于三嗪类多孔有机纳米粒子组装膜的制备方法,以三嗪类衍生物、1,2‑二羰基化合物和醛类化合物为反应单体,在醋酸水溶液中通过Debus‑Radziszewski反应制备三嗪类多孔有机纳米粒子;再将其与阳离子聚电解质混合配制成分散液,在多孔支撑膜表面通过加压沉积过滤—化学交联法制备基于三嗪类多孔有机纳米粒子组装膜。本发明所制备的基于三嗪类多孔有机纳米粒子组装膜兼具高效染料脱盐性能和良好稳定性,可应用于染料提纯和废水处理等应用领域。
877
0
本发明公开了一种糙米发酵活性乳酸菌饮品的制备方法,将糙米原料分为两部分,其中一部分糙米经调湿、表面风干后进行高温流化处理;将高温流化处理后的糙米破碎、润湿,与酒药混合进行发酵,发酵完成后,分离得到清液A;将另一部分糙米浸泡磨浆、糊化、糖化,制得糖化液B;将清液A与糖化液B混合,加入添加剂,然后接入乳酸菌进行发酵,制得糙米发酵乳酸菌饮品。本发明中以糙米或碎糙米为原料,采用高温流化技术,处理利用率高,风味浓郁,糙米天然营养成分损失少,发酵时间短;原料糊化度高,因此产品贮藏过程中不产生淀粉回生、沉淀现象等优点,实现了碎米资源的高值利用,同时不产生任何废水,工艺环境友好。
785
0
本发明提供了一种合成含氟亚胺类化合物及其衍生物的合成方法:以式Ⅰ所示的取代叠氮端烯类化合物为起始物,以1‑氯甲基‑4‑氟‑1,4‑二氮杂双环[2.2.2]辛烷二(四氟硼酸)盐为氟源,在碱性物质的作用下,在有机溶剂中,于0~50℃下反应8~24小时,所得反应液经后处理得到式Ⅱ所示的含氟亚胺类化合物及其衍生物;所述的式Ⅰ所示的取代叠氮端烯类化合物与氟源、碱性物质的物质的量之比为1:1~3:1~3;本发明所述的方法安全环保,不产生废气废水;底物适应性好,各种取代基都能有良好的反应;反应条件温和,操作简便。
844
0
本发明公开了一种多级孔结构竹炭/膨润土复合材料及其应用,所述竹炭/膨润土复合材料通过如下方法制备:取竹质纤维素、酸改性膨润土和去离子水,置于反应釜中,于50~225℃搅拌反应,充分反应后分离得到竹炭/膨润土复合材料。本发明进一步提供了所述的竹炭/膨润土复合材料在有机废水吸附脱除中的应用。本发明所述竹炭/膨润土复合材料具有多孔炭和层状结构特征,具有多种不同结构的孔特征,制备方法简单,成本较低,具有高的有机物脱除性能。
815
0
本发明公开了一种毯式废气生物过滤装置及其处理废水的方法,所述过滤装置包括营养液喷淋室、填料室、营养液回收室、进气口、排气口、引风机、压力泵、营养液入口、营养液出口和营养液收集池,所述毯式废气生物过滤装置的上端为营养液喷淋室,毯式废气生物过滤装置的下端为营养液回收室,所述填料室位于营养液喷淋室和营养液回收室之间;所述填料室垂直悬挂若干块毯式多孔填料,所述填料表面接种活性污泥或废气处理用微生物,所述毯式多孔填料厚度为1~100mm,所述相邻毯式多孔填料水平间距为1~10mm;本发明具有操作简单,能耗低的优点,解决了传统生物过滤技术的填料堵塞问题,当空速为0.07m/s,单位填料高度的压力降一直稳定在400Pa/m以内。
1167
0
本实用新型公开了污水处理技术领域中的一种生活垃圾渗滤液高效处理一体机。本一体机由进水口,机械格栅、除臭调节池、管道混合器、沉淀气浮复合固液分离器、厌氧特种固体微生物生化池、富氧特种微生物陶瓷膜自洁膜生物反应池、反冲水池和吸附池、排水口组成。本一体机针对垃圾渗滤液特点通过多项创新,体系了提高效率、增加系统稳定性、缩小体积、节能降耗、延长主要配件的使用寿命等多重优势。本技术和装备还适用于食品加工工业、餐饮废水处理和工业企业食堂污水处理等污染物浓度高且成分复杂、含动植物油浓度高等的污水处理。
740
0
本发明公开了一种深海细菌来源新型耐有机溶剂的碱性酯酶E3及其编码基因与应用。本发明涉及酯酶基因e3来自深海细菌Croceicoccus marinus E4A9T,所述的酯酶基因经异源表达后,底物为对硝基苯酚丁酸酯(C4)时催化活性最高,酶活为143U/mg。酯酶E3酯酶催化水解最适pH为11.0;在有机溶剂和表面活性剂存在条件下,仍能保持较高的酶学活性。该酯酶具有耐有机溶剂和表面活性剂以及碱性特征,可应用于精细化工、制药、洗涤和废水处理等工业领域含有机溶剂和表面活性剂以及高碱条件下的工业生产。
中冶有色为您提供最新的浙江杭州有色金属环境保护技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日