896
0
本发明提出一种3D打印用聚苯乙烯复合材料及其制备方法,该复合材料的制备方法为将烯丙基缩水甘油醚与丙酮混合,加入酒石酸,室温搅拌,再依次加入偶氮二咪唑啉基丙烷、双-[γ-(三乙氧基硅)丙基]四硫化物,室温搅拌,然后加入聚苯乙烯颗粒,加热搅拌,冷却得3D打印用聚苯乙烯复合材料,本发明制备的聚苯乙烯复合材料可在40~50℃的温度范围内进行3D打印,不会堵塞3D打印机喷头;制备工艺简单,生产成本低,便于推广和应用;打印成型后的材料具有无毒、无臭、电绝缘性能好、刚性好及耐化学腐蚀性好等优良性能。
981
0
本发明公开了一种大尺寸块状热塑性高分子复合材料的溶剂融合成型方法,这种方法区别于传统的挤压成型方法,首先将含固体填料的热塑性高分子复合材料制成薄片,然后将薄片叠放成在一起,在叠放片状材料过程每增加一层片状材料,在表面涂一层可以溶解高分子材料的溶剂,叠放的片状材料相互粘接牢固后将溶剂驱除,得到大尺寸的块状材料,块状材料可以进行进一步的加工,获得需要的外形和尺寸。这种成型方法可以采用较小的设备并在较低的压力下制备出更大尺寸的块状高分子复合材料。该方法适用于各种热塑性高分子复合材料的成型,解决了小设备不能制造大尺寸块状材料的难题。
1106
0
本发明公开的一种纳米有机黏土ⅡM?环氧树脂复合材料低水母线浇注工艺,使用有机黏土OMMTⅡ/环氧树脂复合材料提高浇注母线机械强度,有机黏土OMMTⅡ/环氧树脂复合材料常温浇注固化,降低工艺成本,石英微粉(SiO2)作为无机填料加入到环氧树脂中,可降低环氧浇注料交联固化反应的放热量,提高了导热系数,减少了温度分布不均性,又利于传递应力,减缓应力集中,降低了单位体积树脂的固化收缩率,同时提高纳米有机黏土OMMTⅡ/环氧树脂复合材料介电常数,同时喷涂石墨层插化合物作为屏蔽层,减少了电磁辐射,避免或者消除电磁辐射对人体健康的影响和各种电子设备产生的不良影响或危害,以保护人身健康、保护周边环境,纳米有机蒙脱土OMMTⅡ可以提高材料的介电常数,提高浇注矩形母线运行中安全可靠性,使用寿命长。
770
0
本发明公开一种耐高温抗原子氧辐照聚酰亚胺复合材料的制备方法,具体为将聚酰亚胺、玻璃纤维、氧化钛和硅酸铝,混合均匀后烘干、粉碎过筛,然后将获得的模料热压烧结成型,再自然冷却脱模,即获得所述复合材料;以本发明方法获得的聚酰亚胺复合材料具有耐高温及抗原子氧辐照性能,能够提高聚酰亚胺自润滑复合材料在特殊环境下的耐磨性。
1136
0
本发明公开了一种可焊接的层状Fe/Al基复合材料板材的制备方法,其首先将不同质量比的增强体粉末与铝基体粉末分别加入到混料机中,加入钢球进行混合均匀,制成增强体含量不同的混合粉末,然后将增强体含量不同的混合粉末依次封装于圆柱形钢模具中,进行冷压成型,然后在惰性气体下进行热压成型,将热压成型后的坯锭装入金属包套中,进行高温真空除气处理,然后进行热等静压致密化,得到层状铝基复合材料,将其与纯铁板交替层叠经过热压、热轧和热处理,得到可焊接的层状Fe/Al基复合材料板材。该层状Fe/Al基复合材料板材柔韧性好,抗冲击性能优异,具有较好的焊接性能。
1193
0
本发明公开了一种纳米氧化锌/纤维素复合材料的制备方法,该制备方法中于低温下,以高浓氯化锌(ZnCl2)溶液和氢氧化钠(NaOH)/尿素溶液为纤维素溶剂和纳米氧化锌(ZnO)的反应物,溶解的纤维素为制备纳米ZnO的控制助剂,同时作为纳米ZnO团聚的高分子阻隔剂,通过胶体磨作为高效混合的反应器,制备尺寸均一的纳米ZnO/纤维素复合材料。由于本发明利用溶解纤维素分子上大量羟基与锌离子和OH?作用,及胶体磨高效混合作用,有力地促进纳米ZnO粒子于低温、高浓度反应物下的生成,因此,制备方法的特点是反应物浓度高、操作简单、低能耗、易于工业化生产。
本发明为一种多层真空叠轧高耐蚀超级奥氏体不锈钢‑钢多层复合材料及制备方法,包括多层钢材料层和多层超级奥氏体不锈钢材料层,多层钢材料层和多层超级奥氏体不锈钢材料层交替层叠轧制在一起,且复合材料的表层均为超级奥氏体不锈钢层,多层复合材料中每层材料的厚度不大于2mm,钢材料层的层数比超级奥氏体不锈钢材料层的层数少。该方法对材料力学性能的要求进行后续的热处理或者冷轧、退火处理等工艺调控,从而得到具有高屈服强度的高耐蚀超级奥氏体不锈钢‑钢多层复合钢板坯材料。该复合材料由通过较薄的超级奥氏体不锈钢和钢板材多层叠轧复合构成,能同时发挥出钢的优点与高耐蚀超级奥氏体不锈钢材料的耐腐蚀性能及其他优点。
1041
0
本发明涉及一种高光泽耐磨阻燃聚丙烯复合材料及其制备方法,包括聚丙烯、低等规度聚丙烯、阻燃剂、协效阻燃剂、马来酸酐接枝聚丙烯、醇酸树脂、润滑剂、成核剂和抗氧剂。本发明通过引入醇酸树脂,有效抑制了阻燃剂的析出,改善了复合材料的长期使用效果;同时,醇酸树脂与低等规度聚丙烯复配可以提高复合材料的整体外观效果;与成核剂复配还可以有效提高复合材料的硬度,增强了耐磨性能;本发明具备优异的综合性能,具有良好的市场应用前景。
734
0
本发明涉及轨道交通技术领域,尤其涉及一种复合材料蓄电池小车,包括托盘和滑轮组件;托盘包括开口向上的容纳腔,用于放置蓄电池;滑轮组件包括滑轮支撑结构、与滑轮支撑结构转动连接的轮体,滑轮支撑结构局部或全部位于托盘外侧,用于为轮体提供安装位置,滑轮组件滚动设置在蓄电池箱内的导轨上;托盘、滑轮支撑结构均为复合材料结构。通过将蓄电池小车的材料由金属材质改进为复合材料,实现了蓄电池小车的轻量化,托盘容纳腔的设置为蓄电池组提供稳定的支撑,滑轮支撑结构的设置为轮体提供稳定的安装结构。同时,本发明中还请求保护一种复合材料蓄电池小车的制造方法,具有同样的技术效果。
1079
0
本发明涉及一种石墨烯铜基复合材料及其制备方法,采用表面浸蚀‑气相沉积‑超声清洗的方法制备出具有铜基体层‑过渡层‑石墨烯层复合结构的石墨烯铜复合材料,制备方法包括以下步骤:铜粉表面浸蚀;过滤、烘干并在石英舟内铺设;化学气相沉积炉的装配;化学气相沉积;超声清洗并过滤干燥。本发明的复合材料中铜基体与石墨烯之间具有优良的结合力,且石墨烯层具有完整、缺陷少、质量优的特点,所制备的复合材料抗拉强度、变形率、导电性能优异。
962
0
本发明公开了一种无卤阻燃长玻纤PP复合材料及其制备方法,由以下原料制备而成:所述原料按重量份数比为:相容剂1‑15重量份、聚丙烯1.5‑3重量份、无卤阻燃剂15‑18重量份、抗氧剂1.3‑4重量份、无碱长玻纤12‑16重量份、氯化钙0.5‑1.5重量份、热塑稳定剂2‑7重量份、活性纳米氧化锌0.7‑2重量份、PP‑g‑MAH10‑15重量份、润滑剂3‑5重量份、抗氧剂1‑12重量份,在本发明的使用当中,通过相容剂、无卤阻燃剂、无碱长玻纤、热塑稳定剂、PP‑g‑MAH投入混料机高速加热混合制备,从而完成带有无卤阻燃剂的无卤阻燃长玻纤PP复合材料的母料,同时母料制备完成后添加活性纳米氧化锌、润滑剂和氯化钙等材料进行制备从而完成无卤阻燃长玻纤PP复合材料,从根本上解决了长玻纤PP复合材料防火性能差的问题。
本发明属于纳米复合材料与环境材料制备及其降解环境污染物的技术领域,涉及一种Co‑MIL‑53(Fe)‑NH2/UIO‑66‑NH2复合材料及其制备和应用。通过原位法将八面体UiO‑66‑NH2和Co‑MIL‑53(Fe)‑NH2结合,成功制备了Co‑MIL‑53(Fe)‑NH2/UIO‑66‑NH2复合材料,用于吸附和可见光(λ≥420nm)下降解抗生素四环素,复合材料中Co‑MIL‑53(Fe)‑NH2与UiO‑66‑NH2质量比为7:3的具有最高效的吸附和光催化协同降解能力(Co‑MIL‑53(Fe)‑NH2为45%,UiO‑66‑NH2为53%)。
969
0
本发明公开了一种耐火电缆用硅橡胶复合材料及其制备方法,涉及橡胶材料技术领域。本发明在制备耐火电缆用硅橡胶复合材料时,将碳酸钠、碳酸钾、硼酸、二氧化硅和三氧化二铋进行煅烧、多段冷却处理制得低熔点无机颗粒,将正硅酸乙酯水解沉积在低熔点无机颗粒表面,再将甲基三甲氧基硅烷、二苯基二甲氧基硅烷和乙烯基三甲氧基硅烷进行反应后接枝表面制得改性无机颗粒,将甲基三甲氧基硅烷、二苯基二甲氧基硅烷和乙烯基三甲氧基硅烷反应制得超支化聚硅氧烷,将乙烯基硅油、氯丁橡胶、改性无机颗粒和超支化聚硅氧烷共混,进行一段硫化和二段硫化后制得耐火电缆用硅橡胶复合材料。本发明制备的耐火电缆用硅橡胶复合材料具有优良的抗断裂性和耐火性。
1102
0
本发明公开了一种基于纳米复合材料的直角型黏弹性阻尼器,包括左部端板、下部端板、外侧钢板、内侧钢板、纳米偏高岭土/氟橡胶复合材料和中间钢板:纳米偏高岭土/氟橡胶复合材料有两层,对称设置于中间钢板两侧,内、外侧钢板设置于两纳米偏高岭土/氟橡胶复合材料层外侧;中间钢板长边与内、外侧钢板长边呈直角,中间钢板与左部端板固定,内、外侧钢板与下部端板固定。本发明装置构造简单、经济实用、制作快速,可以方便地安装在梁柱节点处,节省空间,并提高节点刚度,在宽阻尼温域下也可以较好地发挥能量耗散性能,在地震作用下能够更好地保护建筑结构。
1177
0
一种应用于薄壁制件的玻纤复合材料,按重量百分数其组分包括:热塑性树脂:10%-95%;玻璃纤维:0%-30%;相容剂:1%-5%;润滑剂:0.1%-1%;抗氧剂:0.1%-2%。本发明的薄壁部分以薄壁型材以嵌件的方式,其余的本体部分通过注塑完成,并通过二次包胶的方法连接。本发明是一种应用于薄壁制件的玻纤复合材料,该复合材料翘曲度低、无波流痕、表面光滑、综合机械性能好的优点,并且制备该复合材料的方法简单,适应于制备不同要求的薄壁制件,大大的拓宽了薄壁制件的适用范围。
834
0
本发明为一类具有荧光性质的水溶性磁纳米复合材料的制备方法。本发明以乙酰丙酮铁(Ⅲ),1,2-十六二醇和油酸等原料通过高温溶剂法制备单分散的磁纳米粒子,采用可逆加成-断裂转移法合成了具有荧光性质的水溶性磁纳米复合粒子。这类磁性纳米复合材料在生物分离、靶向给药、热疗和磁共振成像等生物领域有着广泛的应用前景。磁性纳米复合材料容易制备且稳定性好,我们在聚合物末端引入生物相容性的氨基,氨基可以和异硫氰酸荧光素反应,在磁纳米复合材料表面引入异硫氰酸荧光素以便实现对生物活性物质的荧光标记。
1036
0
本发明提供一种轻质纳米晶钛基纤维增强镁合金块体复合材料及其制备方法,该复合材料的性能优越,强度高。其制备工艺简单,生产成本低,适于工业化生产。该复合材料以镁合金为基体,在基体上分布着纳米晶钛基纤维,纳米晶钛基纤维占复合材料的体积百分数为40-60%,该镁合金基体的化学成分的重量百分含量:Al为5%~9%,Pb为0.1%~0.9%,Sm为0.003-0.09%,其余为Mg;纳米晶钛基纤维的化学成分的重量百分含量:Al为25%~30%,Cu为5%~10%,Sr为1%~5%,Sn为0.05%~0.09%,Sm为0.003-0.09%,Dy为0.5%~1.5%,Nd为0.5%~2%,其余为Ti。
920
0
本发明涉及一种石墨烯/羟基磷灰石纳米复合材料及其制备方法,特别是指一种氨基酸辅助的水热制备石墨烯/羟基磷灰石纳米复合材料的方法,属于纳米复合材料和生物材料领域。本发明将氧化石墨烯置于去离子水中超声分散,加入无水氯化钙搅拌,形成混合溶液A;稀磷酸溶液中加入氨基酸搅拌,形成混合溶液B,再用稀盐酸溶液调节溶液pH=7.5-8.5,最后将混合溶液A与混合溶液B混合转入到聚四氟乙烯反应釜内进行水热反应,反应结束后,产物经离心、洗涤和真空干燥获得复合材料。本发明具有操作工艺相对简单、结构可控、较好的表面形貌、大的比表面积、尺寸均匀等方面的优点。
本发明涉及铝基复合材料,特指5G基站用高强韧高导热易焊接铝基复合材料及制备方法。本发明通过化学成分设计、原位纳米颗粒强化、细化,稀土微合金化技术以及开发设计的电磁超声调控双辊连铸轧装置,制备5G基站用高强韧高导热易焊接的铝基复合材料带材。采用本技术制备的复合材料带材,晶粒细小、晶内包含纳米稀土析出相、晶界包含高导热的原位纳米陶瓷颗粒,显著提高合金室温强韧性和导热性的同时,由于低熔点的合金成分设计和晶粒显著细化导致的晶界含量提高、有效提高了合金带材的叠轧冷焊性。
本发明公开了一种用于复合材料构件成型的增强纤维软模成型方法及应用,通过机械制造的方法加工一个与复合材料加强筋结构件外形尺寸完全一致的金属假件,并通过该金属假件制造出用于复合材料构件成型的具有一定刚度的增强纤维软模工装;通过该软模工装可均匀、精确地将热压罐施加的压力传递给复合材料加强筋结构件,从而避免加强筋部位的热滞后效应,并在保证加强筋条的外形尺寸及轮廓度,同时提高了制件的制造效率。
917
0
本发明提供一种高发泡倍率导电聚丙烯复合材料及其制备方法,涉及超临界流体发泡领域;该复合材料的初级产品按重量份计,包括60‑85份高熔体聚丙烯、3‑5份相容剂、2‑4份碳纳米管、8‑20份导电炭黑、1‑2份聚羧酸减水剂、1‑2份硅灰、0.5‑2份润滑剂、0.5‑1.5份抗氧剂和0.2‑0.5份成核剂;其方法采用超临界流体发泡工艺对初级产品进行发泡;本发明采用碳纳米管与导电炭黑复配作为聚丙烯复合材料的导电填料,同时通过聚羧酸减水剂对碳纳米管表面进行接枝后再辅以硅灰对其进行混合搅拌,能够有效的解决导电填料分散不均的问题,进而提高聚丙烯复合材料的导电性能,同时提高产品的发泡性能;最终制得的产品泡孔尺寸更小,泡孔更细腻,发泡倍率越大。
977
0
本发明公开了一种核级离子交换树脂基复合材料及其制备方法。该复合材料首先利用还原剂在聚合物封装剂的存在下将铂前驱体还原成聚合物封装的纳米铂颗粒,加入硅源和铝源后在聚合物作为结构导向剂下经水热反应后得到铂‑硅铝分子筛核壳结构复合物,内核为纳米铂颗粒,壳层为硅铝分子筛。最后将铂‑硅铝分子筛核壳结构复合物组装至核级离子交换树脂上,得到核级离子交换树脂基复合材料。该复合材料具有较强的离子交换性质、较高的催化脱除效率、较强的环境耐久性和极高的可循环使用性能,在核工业循环水处理领域中有良好的应用前景。
1072
0
本发明公开了一种包覆型双金属复合材料制备工艺及设备,采用感应加热器对安装在浇注底板上面的外层复合材料管进行整体加热到600~1000℃,浇入内层复合材料金属液,继续加热10~50分钟,启动升降装置将加热器以一定速度向上提升,经5~15分钟升到保温圈停止,继续加热10~50分钟,对冒口进行补缩,停止加热后,制造成界面呈冶金结合的包覆型双金属复合材料。组织致密,质量好,工序少,成本低效率高等优点。采用金属管材取代模具直接成型,可比金属型铸造节约15~30%,节省了模具及造型材料和工时,减少了资源和能源的浪费和环境的污染。
1076
0
本发明公开了一种高导热纳米碳复合材料及其制备方法。所述高导热纳米碳复合材料主要由多根碳纳米管的聚集体与附着在所述聚集体中的一根或多根碳纳米管表面的氧化石墨烯经两步热处理形成,其中第一步热处理是在还原性气氛中进行,热处理温度为200~500℃,第二步热处理是在保护性气氛中进行,热处理温度为1500~3000℃。与现有的碳纳米管/石墨烯复合材料相比,本发明提供的高导热纳米碳复合材料的热导率等性能有显著提升,同时还具有高柔韧性、高导电性和力学性能优良等特点,且其制备工艺简单可控,能耗低,易于规模化实施。
845
0
一种陶瓷基复合材料疲劳极限的快速预测方法,在疲劳过程中考虑到了基体开裂、界面脱粘以及滑移、界面磨损和纤维断裂等因素的影响,建立了一种复合材料的疲劳极限状态,并且考虑复合材料内部纤维单丝可能存在断头,提出了一种能计算纤维单丝断头概率的模型,提高了计算的疲劳极限载荷的准确性,这样能快速的计算得到陶瓷基复合材料的疲劳极限载荷。本发明中计算得的疲劳极限载荷所需要的大部分参数都可以通过实验得到,使用本发明所提供的方法能够很快速的得到材料的疲劳极限载荷。疲劳极限载荷代表着材料在永不疲劳的前提下所能够承受的最大载荷,可以用来判断材料的工作环境是否合适。
821
0
本发明公开了一种复合材料构件有限元分析模型中缠绕张力施加方法,涉及有限元复合材料结构分析领域,能够通过位移加载分析结构层张力对于结构的影响,减小分析过程中变量的使用,不影响温度场的分析。本发明包括:建立复合材料层的三维单元或者二维单元;选取复合材料层界面处的点阵集合或者几何面集合;在模型中建立一个参考点;在参考点和点阵集合或者几何面集合建立coupling连接;通过反力和截面面积计算出张力施加载荷并计算出结果。
1051
0
一种具有导热和电磁屏蔽功能的复合材料,包括导热材料层、二维软磁复合材料层和屏蔽材料层,所述二维软磁复合材料层两侧分别设有导热材料层和屏蔽材料层。本发明所述的具有导热和电磁屏蔽功能的复合材料,所获得的复合膜材料不仅拥有优异的电磁屏蔽能力,同时可以降低电子器件表面温度,快速导出热量。该复合膜材料不仅可以应用到笔记本、GPS、ADSL和移动电话等3C产品中,也可以应用到一些对电磁屏蔽性能有更高要求的领域。根据在不同的终端电子产品的应用,复合膜材料的厚度规格可以做相应的调整。
772
0
本发明公开了一种人造纤维共生热熔混杂复合材料的生产装置,所述的生产装置至少包括两个独立的纤维生产单元,纤维生产单元在纤维牵伸时通过具有一定压力的气流夹持纤维进行拉伸,获取一定细度的纤维;各个纤维生产单元的纤维喷嘴的牵伸气流的出口气流方向的均交汇于一处,该交汇处为纤维的混合位置;纤维生产单元的喷丝口将所有产出的纤维在交汇处进行混合,混合后的混杂纤维被纤维收集器收集,形成人造纤维共生热熔混杂复合材料。本发明能够使不同聚合物原料同时直接纺出的纤维在熔融状态下进行混杂黏连,使最终形成的复合材料具有抗撕裂、高蓬松、混合均匀的特点,无需施加化学粘合剂而使材料黏接,同时也可以获得任意混合比例的复合材料。
837
0
本发明涉及一种基于双组分胶粘剂的复合材料的制造方法,双组分胶粘剂包含主剂和固化剂,其中,主剂以流体状涂布于第一材料的待粘接面,固化剂以流体状涂布于第二材料的待粘接面;将第一材料和第二材料的待粘接面相对压合,得到所述复合材料。本发明还包括与该方法相适应的基于双组分胶粘剂的复合材料制造系统。本发明通过将双组分胶粘剂中的主剂与固化剂分别涂布于待粘接件的两个待粘接面上,然后压合粘接得到复合材料。由于主剂和固化剂已被涂布于两个待粘接面上,已使主剂和固化分别被摊薄,起到了近似“稀释分散”的作用,非常有利于主剂与固化剂二组分之间实现高度的均匀接触与混合,故无需再通过溶剂稀释和搅拌等均质化处理和烘干溶剂等操作。
726
0
本发明公开了一种平纹编织复合材料预制体细观模型建立方法,首先选择铺层网格模型并输入所需参数,按照预设顺序遍历网格中的经线和纬线,对网格模型中的全部交点进行波峰波谷分类,其次将铺层网格中的经线映射为经纱中心线曲线组,将铺层网格中的纬线映射为纬纱中心线曲线组,得到铺层网格整体平纹编织纱线中心线曲线组,接着根据纬线以及对应的纬纱曲线段各节点和映射节点得到平纹编织复合材料预制体经纱细观几何模型,根据经线以及对应的经纱曲线段各节点和映射节点得到平纹编织复合材料预制体纬纱细观几何模型,组合经纱细观几何模型和纬纱细观几何模型,得到平纹编织复合材料预制体整体细观几何模型,完成建模。
中冶有色为您提供最新的江苏有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日
2026年01月23日 ~ 24日