930
0
本发明提供了一种吸声降噪材料、其制备方法及应用,所述的吸声降噪材料以质量百分数计包括如下组分:高分子树脂70~90wt%,空心玻璃微珠10~30wt%,增强增韧剂0~10%。所述的制备方法包括:高分子树脂、空心玻璃微珠和增强增韧剂按比例混炼后注塑成型得到所述的吸声降噪材料。本发明通过添加不同粒径的空心玻璃微珠形成了多级孔特性,孔隙大小可通过添加的空心玻璃微珠进行调节,控制空心玻璃微珠的添加量和尺寸可以调控复合材料的孔隙率,添加磷酸氢锆作为增强增韧剂,从而达到调节复合材料吸声降噪和力学性能的目的。
本发明提供了一种含磷的反应型阻燃剂环氧树脂组合物、覆铜板及阻燃剂的制备方法,所述含磷的反应型阻燃剂由带有‑P‑H反应基团的化合物与含有碳氮不饱和键的化合物通过加成反应得到;本发明提供的含磷的反应型阻燃剂结构新颖,应用范围广,结构中含有活性氨基,能够参与到复合材料的反应中,使得复合材料的稳定性增强,阻燃性提高,并且不会受到水等因素的影响,同时具有良好的物理性能和强度,应用前景良好。
本发明涉及光催化降解技术领域,且公开了一种N掺杂TiO2中空微球‑BiOBr的光催化降解材料,以N掺杂多孔TiO2中空微球为基体,硝酸铋和溴化钠为原料,得到N掺杂TiO2中空微球负载花状纳米BiOBr复合材料,具有超高的比表面积,有利于暴露更多的光催化活性位点和吸附更多的甲基橙等有机污染物,N掺杂促进纳米多孔TiO2中空微球表面形成更多的氧空位,捕获光生电子,延缓光生电子‑空穴复合,BiOBr与TiO2形成p‑n型异质结,进一步促进光生电子‑空穴分离,同时使得复合材料的带隙变窄、吸收带边红移,提高了对可见光的吸收效率,使得N掺杂TiO2中空微球‑BiOBr的光催化降解材料具有优异的光催化降解甲基橙等有机污染物的性能。
本发明公开了一种应用于木质板材之间或木质板材与PVC板粘结的EVA胶膜及制备方法,其技术方案要点是:由如下重量组分的原料制成:EVA一型树脂50~70份,EVA二型树脂25~40份,过氧化合物引发剂0.3~1.5份,接枝助剂1~2份,溶剂油30~60份,抗氧化剂0.1~0.6份,无卤阻燃剂2~5份。本发明的一种应用于木质板材之间或木质板材与PVC板粘结的EVA胶膜,通过添加阻燃填料等来提高胶膜复合材料防火等级,提高复合木材的胶合强度和环保阻燃要求,提高复合材料的阻燃、防水、耐老化效果。
833
0
本发明公开了一种双层材料缸套制备方法;该方法先将离心铸造预制铝合金缸套内表面进行机械打磨、抛光,并用化学清洗去除油污和氧化物,随后进行内表面电镀铜处理;然后将已电镀铜的预制铝合金缸套置于模具中并预热,浇注颗粒增强复合材料熔体;最后冷却后得到双层材料缸套。本发明利用表面预处理与离心铸造相结合的方法实现内层的颗粒增强复合材料与外层铝合金的双层材料缸套的制备,内外层间为冶金结合,使得制备的缸套具有高强度、高韧性和耐热耐磨,为实现全铝发动机的制造提供了新方法,其工艺简单、成本低、可大量生产,在航空和汽车等领域可以得到广泛的应用。
1129
0
本发明公开了一种用于颌面缺损修复的复合生物活性材料及其制备方法,该方法包括:将聚醚醚酮薄膜置于丙酮溶液中加热回流12h不断搅拌,然后取出依次用丙酮、水、75%乙醇超声清洗30min,得到中间品A;将胶原蛋白溶于0.1‑1%乙酸溶液中,制成0.1‑3%的胶原蛋白溶液,于PBS缓冲液中透析至中性,得到中间品B;在中间品B中加入脱钙人牙基质颗粒均匀搅拌,得到中间品C;将所述中间品A放入中间品C中交联冻干。本发明复合材料克服了DTM、胶原蛋白机械力学弱的缺点,在弹性模量和拉伸强度方面接近骨组织,同时具有良好的骨诱导作用,且该复合材料还能避免产生免疫排斥反应,降低术后修复失败概率,减轻病患痛苦。
1156
0
本发明属于金属氧化物涂层技术领域,公开了一种低温反应溅射沉积纳米α‑Al2O3涂层的方法。将Al粉及α‑Al2O3粉用粉末冶金的方法制成复合材料,切割成设备所需的尺寸后作为沉积靶材和工件基体分别安装在射频磁控溅射的靶工位和沉积腔室样品台上,排除沉积腔室残留的水蒸汽后抽至本底真空,然后注入Ar+O2混合气体进行预氧化处理;调整Ar+O2混合气中的O2分压至15%~25%范围,并调整工件基体温度至550~750℃范围,启动射频磁控溅射镀膜系统,开始反应沉积得到所述纳米α‑Al2O3涂层。本发明所得涂层为纳米晶结构涂层,韧性好,与基体结合牢固,涂层在相对较低的温度下具有稳定的α相结构。
1127
0
本发明公开了一种新型促成骨含锶复合骨修复材料,该骨修复材料的原料包括含锶α半水硫酸钙和纳米羟基磷灰石,所述含锶α半水硫酸钙和纳米羟基磷灰石的质量比为0.82‑1.86。相应的,本发明还公开了一种新型促成骨含锶复合骨修复材料的制备方法和用途。将含锶α半水硫酸钙和纳米级羟基磷灰石按一定比例混合制成一种新型的复合材料,在保留了Sr‑α‑CSH良好的生物相容性、以及兼具骨传导性和骨诱导性等优势的基础上,通过与纳米级羟基磷灰石的复合,改善了单纯Sr‑α‑CSH降解过快的材料特性。同时利用两种材料不同步的降解特性,进一步改善了复合材料中羟基磷灰石的降解率,并充分发挥锶离子的成骨诱导作用。
本发明公开了一种超支化聚酰胺复合填充型聚合物基导热塑料,其各种原料的质量百分数为:基体树脂20~90%、导热填料10~80%,另外以总量计,还含有增韧剂0.2~1%、偶联剂1~3%、抗氧剂0.1~0.5%、润滑剂0.1~1.5%;所述基体树脂为质量比为1~9∶1的超支化聚酰胺(HPA)和尼龙PA66;所述导热填料为大小粒径氧化镁的混合物。本发明优化了超支化聚酰胺的合成方法,并利用HPA与PA-66混配作为基体树脂,同时以大小粒径氧化镁复配作为填料,达到了显著的协同增效作用,克服了现有导热材料导热系数低、加工成型难、成本高的问题,制备得到的复合材料导热系数高,加工成型方便,产品设计自由度高。
754
0
本发明属于热塑性复合材料制备技术领域,公开了一种连续纤维含量可控的热塑性复合板材及其制备方法。本发明制备方法包括以下步骤:将连续纤维和树脂纤维分别展开,共混后收卷,得到复合纤维束,将其编织为复合纤维织物,热处理,一步热压复合得到热塑性复合板材;所述热处理指对复合纤维织物进行热烘处理,热烘处理温度为树脂的热变形温度和熔融温度之间。本发明解决了纤维在复合材料中的分散均匀问题,实现纤维高达70%的大量填充,制备得到的板材具有优异的强度和刚度,可适应不同领域的要求。且通过在树脂热变形和熔融温度间热处理,解决了热压时热变形收缩问题,无需先热压基材得到片材再二次热压得到板材,直接由基材一步热压得到板材。
912
0
本发明公开锂离子电池用复合正极材料及其制备方法与锂离子电池,包括步骤:按照Ni : Co : Mn摩尔比为X : Y : Z配制成溶液,碱性条件下共沉淀制备前驱体氧化物;配制Li源和前驱体氧化物;上述物料混合均匀后,高温烧结,得到富锂三元材料;将P源和Fe源共沉淀制备FePO4;将富锂三元材料与FePO4按照一定摩尔配比配制,并在溶剂中混合均匀,干燥后研磨均匀;将上述混合粉体高温下烧结;随炉冷却,即得锂离子电池用复合正极材料。本发明的三元材料与磷酸铁锂的复合体系,有效改善了材料复合的接触界面,更好的发挥复合材料的协同作用。同时抑制三元材料与电解液接触发生的副反应,大幅提高锂离子电池的安全性。
911
0
本发明提供了一种注塑成型鞋面材料及其制备方法,所述鞋面材料包括如下质量份数的原料组分:100份TPU颗粒、40‑70份EVA树脂、5‑20份超支化树脂、5‑30份填料和0.5‑3份交联剂。所述制备方法包括如下步骤:(1)将配方量的各组分加入螺杆挤出机中熔融塑化,得到TPU复合材料;(2)将所述TPU复合材料通过注塑机注射入模具中,冷却后得到所述注塑成型鞋面材料。本发明提供的注塑成型鞋面材料具有较高的拉伸强度、良好的弹性以及较低的收缩率,能有效减少产品在注塑过程中的收缩和翘曲。
1166
0
本发明公开了一种包覆型水合盐储热材料及制备方法;该包覆型水合盐储热材料由内部芯材和外部壁材组成;制备时,先将无机盐、成核剂、增稠剂溶解在水中,得到混合溶液;将多孔吸附材料和所述混合溶液混合,搅拌均匀,得复合材料;将复合材料结晶,制备出复合相变材料;将树脂单体和预聚体配制光固化树脂溶液;将光固化树脂喷到所述复合相变材料上,喷洒均匀后在UV灯下光照,得到包覆型水合盐储热材料;该方法制成的储热材料具有无相分离、无毒无腐蚀、过冷度小且不会产生液漏等优点,同时具有碳材料导热系数大的优点,储热性能和热稳定性能均有良好表现。
本发明提供了一种作为锂离子电池负极的SnO2/C纳米实心球的制备方法,包括以下步骤:A)将锡源化合物和交联剂在催化剂存在的条件下进行交联反应,得到交联高分子纳米实心球;B)将所述交联高分子纳米实心球碳化,得到SnO2/C纳米实心球。本发明提供的制备方法简单,此方法制备得到的SnO2/C纳米复合材料具有高能量密度、高功率密度和循环性能稳定的特点。
901
0
本发明属于电池隔膜制备技术领域,具体公开了一种高含量玻纤填充的聚丙烯电池隔膜的制备方法,包括如下步骤:S1.将玻纤加入含有硅烷偶联剂的乙醇水溶液中浸泡,过滤,烘干后得到改性玻纤;S2.将S1中改性玻纤和聚丙烯共混,制成共混料,将共混料熔融挤出制成母料;S3.将S2中母料挤出成型,牵伸后得到改性玻纤聚丙烯复合材料;S4.将S3中所得复合材料拉伸制成多孔薄膜,将多孔薄膜浸泡在极性聚合物溶液中,烘干,即得聚丙烯电池隔膜;本发明制备的玻纤填充的聚丙烯电池隔膜具有孔径分布均匀、耐热性能好、力学强度高和安全性能优越的优点,且离子选择性较高,有望应用在动力电池、高温锂离子电池、锂硫电池及锂空气电池等领域。
1114
0
本发明属于高分子胶粘剂领域和复合材料领域,公开了一种无卤阻燃聚烯烃热熔胶粘剂。该胶粘剂由如下重量份的组分组成:无卤阻燃剂8~30份;改性聚烯烃10~25份;乙烯共聚物30~80份;增粘剂0~20份;助剂0.3~1份。还公开了一种利用该热熔胶粘剂制成的复合结构胶片。通过本发明得到的复合结构胶片,阻燃性好,阻燃级别可达到94V0级;同时具有粘接力高、韧性好、固化速度快的特点。将该复合结构胶片用于板材和蜂窝芯的粘接制成的铝蜂窝板具有良好的阻燃性,达到国家标准GB?8624-A级,可广泛用于航空、建材、电器等行业。
901
0
本发明涉及一种纳米银/粘土插层复合材料,由高岭石和蒙脱石层间作为控制纳米粒子的模板,采用水热插层不加液态还原剂的方法,对高岭石采用DMSO作为前驱体,银氨为二次插层物;对蒙脱石直接用银氨进行插层,而后在90℃水浴下得到。所述纳米银/粘土插层复合材料可作为抗菌材料,广泛应用于陶瓷、涂料、化妆品、肥皂等领域。
1157
0
本发明涉及一种文胸罩杯支撑圈,它属于服装配件技术领域,特别是一种用于文胸罩杯的支撑部件;其特征在于所述的支撑圈本体是采用碳纤维增强树脂基复合材料经成型工艺制成;所述的碳纤维复合材料由如下重量百分比的成分的原材料经过现有工艺复合而成:碳纤维30%-95%,基体树脂5%-70%;所述的碳纤维是连续纤维或短纤维。本发明在具有现有罩杯支撑圈的承托和修饰作用的同时,还具有重量轻、高强度、耐疲劳、耐磨、耐腐蚀的特性,使用安全可靠;本发明还具有优良的减震性,保证了穿着更轻松、舒适。
1214
0
本发明提供了一种电机永磁体固定结构、固定方法以及包括该结构的电机。其中电机永磁体固定结构包括转子铁芯;永磁体,覆盖在转子铁芯的外表面上;以及复合材料层,包括围绕永磁体外表面设置的扩幅纤维束。固定方法包括:步骤1.将纤维束进行上浆扩幅处理,形成扩幅纤维束;步骤2.将若干扩幅纤维束缠绕在永磁体外表面,形成纤维预成型体;步骤3.采用树脂膜渗透成型工艺在纤维预成型体上形成复合材料层。根据本发明,可以解决现有技术中由于保护永磁体的保护层厚度过大,导致永磁体与定子绕组之间的间隙过大而漏磁的问题。
1039
0
本发明公开了一种无卤阻燃剂组合物,该无卤阻燃剂组合物包含金属氢 氧化物如水合金属氢氧化物和表面处理剂,其中,表面处理剂包含至少一种 轻稀土基的多中心表面处理剂;该表面处理剂还可进一步包括协同表面处理 剂。本发明还提供了含有本发明无卤阻燃剂组合物的聚合物复合材料。本发 明利用稀土元素独特的外电子层结构,有效克服金属氢氧化物与聚烯烃之间 的相容性问题,最终实现用稀土处理剂活化的Al(OH)3,Mg(OH)2和水滑石 与聚烯烃制得的无卤阻燃复合材料,不仅对环境友好,而且具有优良的阻燃 性能、物理力学性能和加工性能。
937
0
本发明公开了一种负极材料,所述材料包含石墨烯片的堆叠层和锡金属颗粒,所述锡金属颗粒嵌入所述石墨烯片中或分布所述石墨烯片之间;本发明还公开了一种负极材料的制造方法,采用一步共热还原法,使锡氢氧化物在石墨烯片上直接还原得到锡金属颗粒,并焙烧得到锡-石墨烯复合材料;本发明还公开了一种锂离子电池,其负极采用上述锂离子电池负极材料制成。本发明的锂离子电池负极材料高比容量,首次放电容量可达到600-900mAh/g,稳定后容量可达到550-820mAh/g;长循环寿命,循环次数可达1000次以上;制备工艺简单,适合工业化生产。
本发明公开了一种纳米二氧化硅/壳聚糖杂化材料负载型防老剂及其制备与应用。本发明利用壳聚糖和磷酸盐构建的仿生矿化液诱导纳米SiO2/壳聚糖杂化材料的仿生矿化制备,在矿化制备过程中,加入硅烷偶联剂改性防老剂,通过原位改性,将防老剂接枝在CS‑SiO2杂化材料表面,制得杂化材料负载型防老剂。该负载型防老剂既有效降低杂化材料的表面极性,改善它在橡胶基体中的分散性和相容性,增强填料‑橡胶之间的相互作用,使得橡胶复合材料的硫化速率、交联密度、力学性能均得到提升;又有效地克服小分子防老剂易迁移、易挥发和不耐溶剂抽提的缺点,赋予橡胶复合材料优异的长效抗热氧老化性能和耐抽提性能。
本发明属于超疏水阻燃材料领域,公开了一种聚多巴胺‑勃姆石基超疏水阻燃涂层及其制备方法和应用,包括如下步骤:将具有微纳米复合结构的聚多巴胺‑勃姆石复合材料沉积到基材表面,再用低表面能物质对复合材料进行修饰,即可得到超疏水阻燃涂层。本涂层具有优异的超疏水性能,水在该表面的接触角高达160°,滚动角低至2°。同时,本涂层兼具良好的阻燃性能,经火焰灼烧1s后,原始海绵在9s时燃烧殆尽,而附着本涂层的海绵上的火焰在22s时自熄。本发明的涂层制备工艺简单,原料易得,价格低廉,制备过程采用经典水醇溶剂体系,适用于多种不同基材表面,具备广泛的适用性。
1127
0
本发明涉及酚醛树脂技术领域,且公开了一种高机械性能的SiO2‑石墨烯改性酚醛树脂材料,首先以羟基化石墨烯为原料,十六烷三甲基溴化铵为模板剂,正硅酸乙酯为硅源,通过软模板法,制备得到SiO2修饰石墨烯复合材料,该一种高机械性能的SiO2‑石墨烯改性酚醛树脂材料,硅烷偶联剂γ‑(2,3‑环氧丙氧)丙基三甲氧基硅烷通过环氧键和Si‑O与酚醛树脂中的羟甲基和酚羟基聚合,增加了改性后酚醛树脂的固化交联度,使复合后的酚醛树脂材料力学性能得到了极大提高,同时SiO2‑石墨烯复合材料具有非常好的机械性能,可以进一步提升酚醛树脂的弯曲强度和压缩强度等机械性能,而腰果酚的引入使改性酚醛树脂的分子量提高,树脂黏结SiO2的能力提高。
1189
0
本发明涉及碳纤维复合材料技术领域,是一种表面复合碳纤维的低密度材料及其制备方法,其通过将碳纤维进行浸泡预处理,再将低密度材料与浸泡后的碳纤维在适宜相同温度下粘接并干燥后得到表面复合碳纤维的低密度材料。本本发明所述表面复合碳纤维的低密度材料,其通过采用适宜的粘接温度以及所述粘接处理,使低密度材料与碳纤维粘接融合过程中,产生的热应力减小,使碳纤维更加牢固地粘接在低密度材料表面,由此得到质轻、耐高温、耐摩擦、导电、导热及耐腐蚀的复合材料,其可应用于飞机、医疗器械制造等领域,并且采用本发明的制备方法能够提高碳纤维与低密度材料的粘接牢固度,使碳纤维与低密度材料不易分离。
1134
0
本发明提供了一种硅氧复合负极材料及其制备方法和锂离子电池。所述硅氧复合负极材料包括SiOx、Li2Si2O5和非Li2Si2O5含锂化合物,其中,所述Li2Si2O5包覆在非Li2Si2O5含锂化合物表面。所述制备方法包括:1)将第一硅源SiOy与还原性锂源混合,进行焙烧,得到含有非Li2Si2O5含锂化合物的复合材料;2)将含有非Li2Si2O5含锂化合物的复合材料与第二硅源融合后进行热处理,得到所述硅氧复合负极材料。本发明提供的硅氧复合负极材料通过Li2Si2O5的包覆,解决了现有技术中负极材料在预锂后产生强碱性或者易溶于水的副产物影响后续加工的问题。
本发明提供了一种带有氨基的含磷化合物、环氧树脂组合物、制备方法及应用,所述带有氨基的含磷化合物具有如下式I所示;本发明提供的带有氨基的含磷化合物可以参与反应,在复合材料中形成分子链片段,相比于添加型阻燃剂容易产生析出的现象,本发明的带有氨基的含磷化合物在复合材料中更稳定,玻璃化温度最高可达到180℃以上,阻燃性能优良,物理性能优良,层间剥离强度也可达到1N/mm以上,烘烤后仍能保持较高的稳定性,具有良好的应用前景和较高的应用价值。
1139
0
本申请公开了一种无损检测的太赫兹线阵雷达扫描成像系统及方法,采用多发多收的一维稀疏线阵,并将波导天线与一维稀疏线阵结合,通过波导天线缩小一维稀疏线阵中的阵元间距,使得一维稀疏线阵的等效线阵排布更紧凑,从而提高横向的成像分辨率。同时,通过二维移动架驱动波导天线进行扫描,可以获得待检测的非介电复合材料的三维形貌图像,同时,还通过预置的超分辨率图像重构模型对第一目标图像进行重构,从而可以实现在较低频段获得原本在高频段才可以获得的高精度横向分辨率的图像,降低了硬件成本,解决了现有技术中的成像系统对非介电复合材料成像的分辨率较低,从而难以准确地检测缺陷的技术问题。
1211
0
本发明涉及热熔胶膜领域,特别是涉及一种高粘力耐候热熔胶膜的制备方法,包括如下步骤:S1、将聚酯树脂、热塑性复合弹性体、γ‑(3‑乙酰丙酮基)丙基烷氧基硅烷、四溴双酚A、表面活性剂混合,然后通入喷雾干燥机中进行干燥,得到复合材料;S2、将步骤S1的复合材料、三氧化二锑、抗氧剂、稳定剂、助溶剂置入挤出机中熔融共混挤出,通过冷却进行整形,最后通过收卷工序得到高粘力耐候热熔胶膜。本发明提供一种高性能的高粘力耐候热熔胶膜及其制备方法。
990
0
本发明公开一种快充石墨负极片的制作方法,先制得碳纳米管与多孔石墨烯的分散体系;再与聚四氟乙烯粉料混合,得到多孔石墨烯和碳纳米管通过聚四氟乙烯相互结合形成的片状膜;接着使片状膜经过辊压得到多孔石墨烯层;然后用羧甲基纤维素钠、丁苯橡胶、石墨烯和去离子水制成胶液,涂敷在腐蚀铝箔上,将多孔石墨烯层粘附并且烘干;再一次辊压得到石墨烯极片;接着将纳米Fe3O4离子液体均匀分散在石墨烯极片表面,通过烘干制的复合材料,将复合材料与粘结剂及导电剂混合,在熔融状态下磁化处理使内部Fe3O4定向排列,从而使石墨定向按照端面朝向基底排列的方式排列,经烘干后可降低极片OI值,极片的倍率性能有很大提高。
中冶有色为您提供最新的广东有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!
2025年12月26日 ~ 28日
2026年01月16日 ~ 18日
2026年01月21日 ~ 23日
2026年01月21日 ~ 23日
2026年01月22日 ~ 24日